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ABSTRACT

Managed portfolios are subject to tail risks, which can be either index level (systematic)

or fund-specific. Examples of fund-specific extreme events include those due to big bets

or fraud. This paper studies the two components in relation to compensation structure in

managed portfolios. A simple model generates fund-specific tail risk and its asymmetric

dependence with the market, and makes predictions for where such risks should be con-

centrated. The model predicts that systematic tail risks increase with an increased weight

on systematic returns in compensation and idiosyncratic tail risks increase with the degree

of convexity in contracts. The model predictions coincide with empirical results. Hedge

funds are subject to higher idiosyncratic tail risks and ETFs exhibit higher systematic tail

risks. In the skewness and kurtosis decompositions, I find that coskewness is the primary

source for fund skewness, but fund kurtosis could be mainly driven by cokurtosis, volatility

comovement, or residual kurtosis, varying across fund types.

JEL Classification: G01, G11, G12
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I Introduction

It is well-known that financial asset returns exhibit asymmetry, excess kurtosis, and fat-

tailedness. Mandelbrot (1963) and Fama (1965) provide theoretical arguments and empirical

evidence that price changes closely follow stable Paretian distributions. Along with the obser-

vation of time-varying volatility and volatility clustering, financial economists have been trying

to find sources that can contribute to skewness and kurtosis in return data, both conditionally

and unconditionally. The observation of non-normality and jumps in returns and volatility cor-

roborates the existence of higher moments1. Most importantly, financial markets do crash, as in

1929, Black Tuesday in 1987, the Asian financial crisis in 1997, the Russian financial crisis in

1998, the Long-Term Capital Management crisis in 1998, the dot-com bubble burst in 2000, and

the more recently the crash of 2008. Tail risks are important and relevant.

Tail risks are of central importance to investors. A large negative event can significantly

reduce portfolio value and the literature has tried to model this. The safety first criterion, first

introduced by Roy (1952), requires utility-maximizing investors to concern themselves with

downside risk. Arzac and Bawa (1977) apply this concept to a portfolio choice problem. They

show that the optimal solution is comparable to the mean-variance allocation, and when assets

are normal or stable Paretian, a 2-parameter CAPM holds in a market of both safety-first in-

vestors and risk-averse expected utility maximizers. One important extension of the safety first

criteria is Value-at-Risk (VaR). In recent literature on portfolio choice and delegated principal-

agents problems, many models are enriched with a VaR constraint to limit downside risk2. In

principle, the motivation behind downside risk is that investors are concerned with losses in

extreme events and thus they will demand compensation for such extreme, but rare risks, and

consider these risks in their investment decisions.

Tail risks can complicate investors’ economic decisions. Harvey, Liechty, Liechty, and

Müller (2010) emphasize the importance of higher moments in portfolio allocation. Cvitanic,

Polimenis, and Zapatero (2008) show that ignoring higher moments in portfolio allocation can

imply welfare losses and overinvestment in risky assets. Moreover, Samuelson (1970) points out

that in discrete time, the mean-variance efficiency becomes inadequate when higher moments

matter for portfolio allocation. In a mean-variance-skewness-kurtosis framework, tail risks are

not diversified away and the omission of higher moments can lead to an inefficient portfolio for

investors.

The lack of diversification in investor holdings suggests that investors will care about not

1For example, Eraker, Johannes, and Polson (2003), Bai, Russell, and Tiao (2003), and Andersen, Bollerslev,

and Diebold (2007)).
2See e.g. Campbell, Chacko, Rodrig6uez, and Viceira (2004), van Binsbergen, Brandt, and Koijen (2008)
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only systematic tail risks, but also idiosyncratic tail risks in their portfolio returns. The tra-

ditional CAPM assumes homogeneous investor expectations for real returns. However, Levy

(1978), Merton (1987), and Malkiel and Xu (2001) extend the CAPM and conclude that in-

vestors hold undiversified portfolios for exogenous reasons, such as trading constraints or mar-

ket frictions. The empirical evidence is supported by Odean (1999) and Polkovnichenko (2005).

Due to distinctive fund characteristics, the level of systematic and idiosyncratic tail risks can

differ across fund types and strategies.

Given that most investors delegate their wealth to fund managers, and optimal portfolio

allocation and risk management are first-order priorities for fund managers, it is important to

understand the structure of tail risks in managed portfolios.

This paper ties fund managers’ compensation schemes with tail risks and tries to understand

the decomposition of tail risks across fund types. The literature on agency costs, incentive

contracts and the fund flow-performance relationship offer grounds for fund managers’ risk-

taking behavior. Motivated by relative performance measures and convex payoff structures, fund

managers may take fund-specific tail risks (big bets) endogenously. Brennan (1993) proposes

an agency based model with relative performance and suggests that option-like compensation

can induce the skewness of fund returns. On the other hand, fund managers may take tail risks

in expectation of market booms and crashes.

I use a simple model to illustrate how fund managers adjust the systematic and idiosyncratic

risk of funds in response to the weight between systematic and idiosyncratic returns (the return

decomposition effect) and to the convexity of incentive contracts (the convexity effect). The

model predicts the following: First, the more systematic returns the contracts depend on, the

more systematic risk the fund managers would take. This action would increase total fund

skewness and decrease total fund kurtosis. Second, when the convexity of the incentive contract

increases, the increased convexity encourage fund managers to take big bets and funds exhibit

lower skewness and higher kurtosis.

The investment funds under this study include closed-end funds (CEFs), exchange-traded

funds (ETFs), open-ended funds (OEFs), and hedge funds (HFs). In the finance literature, few

have looked at the link between tail risks and returns across different types of funds. However,

different fund types are subject to different rules and regulations. Importantly, different fund

types are subject to different compensation schemes and agency costs.

Empirical results confirm with model predictions. HFs are subject to higher idiosyncratic

tail risks, but ETFs exhibit higher systematic tail risks. In addition, HF returns are the most neg-

atively skewed and ETFs have negative skewness close to zero. The decomposition of skewness

shows that coskewness is the most important source of skewness across fund types. This con-
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sistency does not hold for kurtosis decomposition. The source of kurtosis for ETFs and OEFs

mainly come from cokurtosis, but CEFs and HFs have the largest weights on volatility comove-

ment and residual kurtosis, respectively. However, idiosyncratic cokurtosis is consistently the

least important contributing factor to kurtosis across fund styles and types. The result of the

kurtosis decomposition shows higher significance levels than the skewness decomposition.

The rest of the paper proceeds as follows. Section II explains how fund strategies affect tail

risks. Section III offers descriptions of and comparisons across different types of investment

funds. Section IV describes the model to produce tail returns and risks in response to the weight

between systematic/idiosyncratic risk and the convexity in compensation across fund types. Sec-

tion V outlines the data. Section VI explains the empirical methods. Section VII presents the

empirical results. Section VIII checks on the robustness analysis. Section IX concludes.

II How Fund Strategies Impact Tail Risks

Two strategies that traditional fund managers use to outperform benchmarks or peers are stock

picking and beta timing. These two strategies have their own implications for fund tail risks. If

market factors are skewed and fund managers use aggressive bets on beta timing, fund returns

can be skewed. Time-varying betas can induce time-varying systematic skewness risk. If a

fund manager relies on stock selection to generate alpha, idiosyncratic skewness risk of the fund

reflects the skewness of the stocks held over time. The turnover of individual stocks in managed

portfolios can also cause time-varying fund skewness risk. Similarly, time-varying changes in

fund kurtosis risk can result from these two strategies.

Interestingly, stock picking and beta timing strategies can implicitly bring about other forms

of the higher moment risk premium. Idiosyncratic risk is theoretically uncorrelated with the

overall market risk. However, if idiosyncratic risk is priced, the higher moments of idiosyncratic

shocks can be correlated with systematic shocks. Similarly, the covariance risk between the

higher moments of systematic shocks and idiosyncratic shocks can be priced.

Fund risk can be decomposed into systematic and idiosyncratic components. Funds’ system-

atic tail risk comoves with the market. Two lines of research support this argument - coskew-

ness and cokurtosis. The rejection of the single-factor CAPM motivates numerous studies with

a nonlinear pricing kernel. Kraus and Litzenberger (1976) provide theoretical and empirical

evidence that unconditional systematic skewness matters for market valuation. Harvey and Sid-

dique (2000) extend the study to conditional skewness. Dittmar (2002) concludes that condi-

tional systematic kurtosis is relevant to the cross-section of returns. If fund managers want to

increase the funds’ systematic coskewness, in expectation of an upswing in the market, they can
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add positively coskewed financial assets in accordance with fund strategies. Adding an asset

with positive coskewness to a fund makes the fund more right skewed or increases the total

skewness of the fund. Similarly, funds managers can increase portfolio cokurtosis by adding

assets with high cokurtosis to achieve the desired level of total fund kurtosis.

Another mechanism that fund managers can use to increase overall portfolio skewness and

kurtosis operates through idiosyncratic skewness and kurtosis. Some financial assets with spe-

cific characteristics, such as small-cap stocks, illiquid foreign securities, convertible bonds, may

have more skewed distributions. Adding these assets can make investment funds more skewed.

Likewise, foreign currencies have fatter tails than stocks or bonds. Currency fund managers can

adjust the level of kurtosis by dropping currencies with higher kurtosis.

The covariance of the higher moments of idiosyncratic shocks and market returns can also

be extracted from skewness and kurtosis decompositions. Chabi-Yo (2009) shows that idiosyn-

cratic coskewness and cokurtosis are equivalent to a weighted average of individual security call

and put betas. He further concludes that these covariance terms can explain the higher moment

premium. The impact of idiosyncratic coskewness and cokurtosis on fund skewness and kurto-

sis depends on the risk-return relation and the magnitude of conditional heteroscedasticity and

heteroskewticity.

The dependence of conditional volatility and skewness on market returns can vary signifi-

cantly across different kinds of investment funds. If a fund’s volatility covaries negatively with

market returns, high market returns will induce lower fund-specific volatility, and in turn, lower

fund skewness. Therefore, negatively skewed fund returns can be generated through conditional

heteroscedasticity. Likewise, the covariance between market returns and a fund’s idiosyncratic

skewness can result in excess kurtosis of a fund. For example, if fund managers prefer funds

being less fat-tailed, in expectation to an increase in market returns, they can add assets with

high idiosyncratic skewness covarying negatively with market returns. Fund managers can use

conditional heteroskewticity from different assets to manage the total level of kurtosis of funds.

The comovements of shocks to market volatility and fund-specific volatility is the last com-

ponent derived from the kurtosis decomposition. The negative relationship between these two

shocks can reduce the kurtosis level of funds. Since investors prefer assets with lower kurtosis,

fund managers can add assets, whose volatility moves oppositely to market volatility to achieve

this goal.
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III Comparisons across Investment Funds

Financial institutions have been offering a wide variety of financial products to meet investors’

needs in the past years. Investors can choose a specific mutual fund based on their risk aversion

and objectives. OEFs can be actively or passively managed, but CEFs are actively managed.

HFs use leverage and are exposed to higher risks, and therefore they are tailored to more so-

phisticated investors. Recently, exchange traded funds (ETFs) are gaining popularity among in-

vestors, because of their stock-like characteristics and flexibility in long and short trades. ETFs

are passively managed index-based portfolios.

An OEF issues and redeems shares at the net asset value (NAV) whenever investors request

to put in or take out the money. No limitations are put on the number of new shares and the

market price is the same as the NAV. The NAV of the OEF is calculated directly from the prices

of stocks or bonds held in the fund. An OEF is required to report its NAV by 4 pm Eastern

Standard Time. Thus, trades on open-ended mutual funds can only be executed end of the day

when NAVs are determined.

Unlike an OEF, a CEF has a finite number of shares traded on the exchange. A fixed number

of shares are sold at the initial public offering (IPO) and investors are not allowed to redeem

shares after the IPO. Due to a set amount of shares traded on the exchanges, a CEF can be traded

at a premium or a discount. Numerous studies have attributed unrealized capital gains, liquidity

of held assets, agency costs, and investment sentiments as possible reasons for the CEF discount.

Since redemptions of shares are restricted, a CEF is able to invest in less liquid securities than

an OEF, but bears no flow-performance relation. Also, because management ability is priced

in a CEF, investors can bet on the manager’s skills to generate alpha in excess of a benchmark.

Another feature of a CEF is its use of leverage. About 80% of CEFs are income oriented and

around 70% of CEFs are leveraged. A CEF can borrow additional investment capital by issuing

auction rate securities, preferred shares, long-term debt, or reverse-repurchase agreements, etc.

Therefore, a CEF can have higher risks and earn higher returns from illiquidity premiums, active

management, and leverage.

ETFs, like CEFs, are traded on stock exchanges. However, market prices of ETFs diverge

from their NAVs in a very narrow range. Since major market participants can redeem shares

of an ETF for a basket of underlying assets, if the prices of ETFs deviate too much from their

NAVs, an arbitrage opportunity takes place. Similar to both OEFs and CEFs, ETFs also serve

various asset allocation objectives and offer diversification to investors’ portfolios. Most ETFs

passively track their target market indices. But some ETFs, in contrast to mutual funds, are

designed to provide 2 or 3 times leverage on the benchmarks. This characteristic mimics option-

like payoffs without expiration dates. Furthermore, some ETFs such as bond ETFs have low
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trading volume compared to others. The characteristics of tail returns and risks for ETFs with

low trading volume may resemble CEFs.

Mutual funds and ETFs are under SEC regulations, but HFs face minimal regulations by

SEC. Only HFs with more than $100,000,000 in assets are required to register as investment

advisors and so to report holding information through 13-F. Therefore, HF managers are not

binded to avoid certain investment strategies. Fung and Hsieh (1997) identifies that HFs adopt

dynamic strategies. Also, performance fees of HFs are asymmetric and around 15-20%. Lock-

ups and redemption notification periods allow HFs to invest in illiquidity assets (Aragon (2007)).

This characteristic of illiquidity in assets is similar to CEFs, but the high-water mark provisions

give HF managers more incentives to smooth returns over time and can cause more stale price

problems in HF returns. In addition, HF managers use leverage, such as writing calls, to boost

capital base for investments and fund returns. In short, illiquidity, leverage, high-water marks,

few investment constraints, asymmetric performance fees, lack of transparency, and redemption

requirements can induce HF managers to take excessive risks.

Based on their differences in fund characteristics, four types of funds differ in the magnitude

of active management, transparency to investor, and agency costs. This can induce different tail

distributions across fund types although they serve the same objective to deliver risk-adjusted

returns for investors.

Another important aspect on tail risks across fund types is their differences in compensation

structure. A HF manager faces a high-water mark and an option-like compensation contract and

is compensated by positive returns in excess of high-water marks but not penalized by negative

returns. Therefore, a HF manager may take idiosyncratic bets to turn around the fund perfor-

mance. An OEF manager’s compensation is often based on the total assets under management,

and thus she has an incentive to increase fund flows. Sirri and Tufano (1998) and Chevlier

and Ellison (1997) conclude significant nonlinearities in the relation between fund flows and

returns. In addition, the relative performance evaluation to a benchmark may motivate a mutual

fund manager to take bets on performance to climb up the ranking. An ETF manager is often

evaluated based on how close she tracked the benchmark, and thus payoff depends more on the

systematic parts of returns. Pension fund managers are often compensated by the idiosyncratic

components of excess returns. Overall, the compensation structure may impact a fund manager’

risk-taking behavior and in turn induce tail returns and risks of the fund.

I take the view of a fund manager and build a model based upon the concept of compen-

sation structure. It predicts that how the compensation structure can induce systematic and id-

iosyncratic skewness and kurtosis in fund returns and her optimal allocation between the market

portfolio and a negative skewed bet on idiosyncratic returns. Furthermore, the model predictions

7



are used to explain tail risks across fund types.

IV The Model

A Return Dynamics and Tail Dependence

Suppose that a fund manager faces a portfolio choice problem today at time t between a market

portfolio and a big bet based on their past returns. Making investment decisions based on past

returns mirrors one realistic and simple investment strategy and coincides with the focus of this

study on unconditional analysis. In addition, this setup also proposes the decomposition of fund

returns into systematic and idiosyncratic components.

Assume the joint distribution of returns of these two assets are independent and identically

distributed (i.i.d) through time and their complete moments and joint distribution are observable

before the allocation is updated. Thus for j= 1...t, the fund’s return dynamics is modeled as

follows:

Ri,j = w∗
uncond,t+1Rp,j + (1− w∗

uncond,t+1)RBB,j (1)

where Ri,j is the returns at time j for fund i. Rp,j and RBB,j are the returns of the market

portfolio and the big bet at time j, respectively. w∗
uncond,t+1 is the optimal unconditional weight

for the period t + 1 for the market portfolio and w∗
uncond,t+1 ∈ [0, 1]3. For simplicity, I drop

subscript t in the following analysis to concentrate on the unconditional analysis.

The market portfolio represents the systematic risk of the fund and suffers from macroe-

conomic shocks. The market portfolio is assumed to be well-diversified (e.g. constructed by

N risky assets) and follows the normal distribution. The market portfolio can be any observ-

able tradeable assets, such as portfolios of funds or portfolios of stocks, as long as the well-

diversification assumption holds. The weight on the market portfolio captures fund managers’

market timing strategy at time t.

The big bet reflects the fund-specific risk or microeconomic shocks. Fund managers often

engage in security selection to undertake idiosyncratic risk to generate alpha. Simonson (1972)

provides evidence for speculative behavior of mutual fund managers. HF managers commonly

engage in negatively skewed bets. A negatively skewed bet is characterized as a trade that

has a 99% chance of making gains but a 1% chance of losing big money. Examples are short

(derivatives) positions, credit related instruments, syndicated loans, and pass-through securities,

3I also test on w∗

uncond,t+1
∈ [−1, 1] for investors without short sale constraints and results hold.
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etc. Big bets can endogenously generate tail risks and induce asymmetric payoffs in invest-

ment funds. Moreover, trades that endogenously generate left tail risks can help fund managers

manipulate performance measurement (Goetzmann, Ingersoll, Spiegel, and Welch (2007)).

The big bet not only reflects the asset executed under its strategy, but also can be used to

gamble on past fund performance. If a fund underperforms its peers but the fund manager likes

to win the tournament at year-end for higher compensation, s/he can take a big bet to gamble on

fund performance. This idiosyncratic asset can be futures, options, or foreign currencies, etc.,

as long as fund-specific strategies on this asset may suffer from blow up risk.

The literature on pay-performance well document this misbehavior of changing risk charac-

teristics in response to relative performance to benchmarks from the agent (manager) (e.g. Mur-

phy (1999)). Brown, Harlow, and Starks (1996) find that mid-year losers tend to increase fund

risk in the latter part of the year than mid-year winners. Chevalier and Ellison (1997) conclude

that mutual fund managers alter fund risk at the end of year based on their incentives. Kempf

and Ruenzi (2008) find that mutual funds adjust their risk according to the relative ranking in a

tournament within the fund families.

To capture the bet having a low probability of blowing up, but a large chance of winning,

I use the skewed t-distribution to model the big bet. In other words, the skewed t-distribution

characterizes any individual idiosyncratic assets with excessive left tail risks. Moreover, the

skewed-t distribution has slowly decaying power law tails and thus best represents individual

financial asset returns observed in the data.

The generalized skewed t-distribution is first suggested by Hansen (1994) and it is applied af-

terwards to allow asymmetry and fat-tailedness in financial asset returns (Jondeau and Rockinger

(2003), and Patton (2004)). In addition, Theodossiou (1998) and Daal and Yu (2007) show that

the skewed t-distribution provides a better fit than the GARCH-jump models to financial asset re-

turns in both the U.S. and emerging markets. Recent studies also adopt the skewed t-distribution

to model asset returns and show their impact on asset allocation, risk management, credit risk,

and option pricing (e.g. Aas and Haff (2006), Dokov, Stoyanov, Rachev (2007)). In this study,

the marginal distribution of the big bet follows the skewed t-distribution with λ = −0.6 (skew-

ness) and ν = 7 (degree of freedom) to generate negative skewness and excess kurtosis. How-

ever, both parameters are in the reasonable range from the aforementioned empirical papers.

The difference in characteristics between the market portfolio and the big bet lies in the tail

risks. The assumed difference on the marginal distribution of these two assets helps isolate the

effects of the tail risks between two assets. Thus, the tail risks of the fund mainly come from the

asymmetrically distributed and fat-tailed idiosyncratic bets. Furthermore, since only unexpected

shocks matter for unexpected returns, both the market portfolio and the big bet are standardized
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to be mean zero and variance one.

There are alternatives to endogenously generate tail risks for a fund through the idiosyncratic

big bet. For instance, one can add jumps in asset prices and volatility to generate skewness and

kurtosis. The other approach is to model the mixture of normal distributions in returns and

volatility. However, both approaches require more assumed values of parameters.

The dependence structure of two assets helps introduce possible relations between higher

moments of their asset returns. Fund managers’ strategies on beta timing and security selection

do not only affect the magnitude of the systematic and idiosyncratic components of returns.

Even both components are uncorrelated, if idiosyncratic volatility is priced, the higher moments

of the idiosyncratic shocks are not necessarily uncorrelated with the market returns.

The dependence structure between the market portfolio and the big bet can impact the tail

risks of the fund from the following two sources. First, the change of the moments and the return

distribution of the portfolio depends on the covariance, coskewness, and cokurtosis risk between

the market portfolio and the big bet. For example, Boguth (2010) models the state-dependent

idiosyncratic variance and its correlation with the mean and variance of the systematic factor

through common shocks to induce fund skewness and kurtosis. Second, recent studies have

documented the asymmetric tail dependence among financial assets (Longin and Solnik (2001)

and Ang and Chen (2002)). The asymmetric tail dependence among assets held in the fund can

yield tail returns and risks of a fund. Since the tail dependence structure of two assets captures

effects from these sources, I use the tail dependence structure of two assets to reflect its impact

on tail risks of the fund.

I model the tail dependence of two assets by T-Copula4. The bivariate copula is the joint

distribution of two marginal distributions. Financial asset returns tend to comove together more

strongly in bad economic states than good ones. The copula helps model the asymmetric joint

risk among financial assets. Its application includes credit default risk, catastrophic risk for

insurers, systemic risk among financial institutions, etc.

Correlation is only appropriate to measure elliptically distributed risks, such as the multivari-

ate normal distribution. When the fund returns are non-linear, correlation alone cannot correctly

infer the dependence among assets held in the fund. The dependence structure, correlation or tail

dependent parameter κ, and marginal distributions are equally important to identify the depen-

dence relationship of two random variables. I focus on T-Copula because of its prominence in

the tail dependence literature. The results are based on κ = 0 5. Note that the assumption of zero

4I also test on Normal and Rotated Gumbel copula and results hold. Normal copula has zero tail dependence

and Rotated Gumbel copula has lower tail dependence only.
5Results hold for κ = 0.5 and 0.9, reflecting different levels of covariance, coskewness, cokurtosis risk between

the market portfolio and the big bet.
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tail dependence also minimizes any effects between the higher moments of the idiosyncratic

shocks and the market returns so that systematic and idiosyncratic tail risks can be separately

defined.

The setup of this model follows Patton (2004). He studies the optimal conditional weight

between the big-cap and small-cap portfolio under various tail dependence structures. To solve

the optimal weight for two given assets, it is necessary to estimate the conditional mean and

variance. Unlike his study, my focus is on the unconditional weight and I do not restrict the

market portfolio and the big bet to be any specific financial assets. Because I want to emphasize

the differences in tail risks between two assets, I adopt two arbitrary standardized financial

assets6. If I am interested in two specific financial assets, such as S&P 500 and a stock option on

Citibank, I can multiply the standardized time-series by their respective volatilities and add back

their respective means to derive the optimal unconditional weight of these two specific assets. I

show one example with mutual fund data in the robustness analysis section.

This simple allocation problem can be interpreted as fund managers’ ability to adjust funds’

systematic and idiosyncratic risk. For example, market-neutral HFs have low systematic risk

but high idiosyncratic risk. ETF or index funds have high systematic risk, but relatively low

idiosyncratic risk. In daily fund management, fund managers can adopt market-timing or stock-

picking strategies to decide the allocation between systematic and idiosyncratic returns.

B The Optimization Problem

The main optimization problem is how the design of compensation schemes, i.e. the return

decomposition effect and the convexity effect, affects the asset allocation of systematic risk and

idiosyncratic risk. Systematic risk and idiosyncratic risk are represented by the market portfolio

and the big bet, respectively.

Under the assumption of i.i.d returns, the unconditional weight can be solved by maximizing

the sum of utility functions up-to-date.

w∗
uncond,t+1 ≡ argmax

1

t

j=t
∑

j=1

U(Wj) (2)

where Wj is the manager’s total compensation at time j. For simplicity, I drop the subscrip j in

the following notation.

First, the linear contract based on fund manager’s systematic and fund-specific returns with

6I follow Kan and Zhou (1999) to standardize the systematic factor to simulate asset returns.
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the nonnegative allocation weight α and 1− α, respectively7:

Wlinear = α(1 + wuncondRp) + (1− α)(1 + (1− wuncond)RBB)

where α is specified in the incentive contract. The return decomposition parameter α reflects

the weight of the systematic component on the compensation. For the larger α, the manager’s

compensation depends more on the systematic component of returns.

Next, let’s consider that fund managers’ total compensation is based on the convex payoff

Wopt=1+max(φhwm(Ri+K), 0) and Wlinear, weighted by nonnegative g and 1−g, respectively:

W = gWopt + (1− g)Wlinear (3)

= g(1 +max(φhwm(Ri +K), 0)) (4)

+(1− g)α(1 + wuncondRp) + (1− g)(1− α)(1 + (1− wuncond)RBB)

where φhwm is the incentive fee for high-water marks and is commonly quoted as 20% in the

HF industry. The convexity parameter g is exogenously given and varies across fund types. The

lareger the g, the more convex the compensation. K measures the cumulative losses up to time

t and is modeled as Kt = min(0, Kt−1 +Rt).

I directly model the option-like payoff of HFs, instead of an arbitrary fixed K. Although

the fixed threshold can imply implicit convexity from the fund-flow performance of other types

of funds, it is too arbitrary to assign a specific value to K and to justify its appropriateness.

Furthermore, incentive fees in the mutual fund industry are calculated based on cumulative per-

formance over previous periods as well. Elton, Gruber, and Blake (2003) show that fulcrum fees

can always be converted to non-negative incentive fees. To my knowledge, there are no empir-

ical studies to estimate the range of K across funds. Thus, I model the threshold as cumulative

losses. Nonetheless, results still hold for a fixed K.

This setup for the total compensation can be applied to different types of investment funds.

For example, pension fund managers are often paid out based on the fund returns in excess of

the benchmark or the market, i.e. α = 0. HF managers are often measured against a high-water

mark and thus g = 1. For ETFs and index funds, tracking errors are critical in performance

measure and no convex compensation scheme applies to the total payoff. Therefore, I can set

α and g to be 1 and 0, respectively, in the model. Actively managed mutuals may be based

on a combination of total fund returns and fund-specific returns (0 < α, g < 1). In summary,

this setup implicitly captures the relative performance measure used in ETFs, CEFs, OEFs, and

7Ramakrishnan and Thakor (1984) show that in the existence of moral hazard, contracts will depend on both

systematic and idiosyncratic risks.
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absolute performance measure used in HFs. The order of the magnitude of α (index tracking)

across types of funds is ETFs, CEFs, OEFs, and HFs; the effect of g (convexity) is in the order

of HFs, OEFs, CEFs, and ETFs.

The non-linear fund returns and option-like compensation schemes attribute to the nonlinear-

ity of total wealth W . The utility below follows Mitton and Vorkink (2007) and Boguth (2010)

and weighs in the effects of higher moments.

EU(W ) = EW −
1

2τ2
E(W − EW )2 +

1

3τ3
E(W − EW )3 −

1

12τ4
E(W − EW )4 (5)

where τ2, τ3, and τ4 are risk tolerance for the second, third, and fourth moments of wealth W .

Main results use τ2 = 1.5, τ3 = 0.15, and τ4 = 0.015.

This type of utility captures the manager’s concern for skewness and kurtosis relatively to

dispersion. The positive sign of the third term denotes the manager’s preference for skewness.

The negative sign of the fourth term corresponds to the manager’s dislike to kurtosis. The param-

eters of risk tolerance for the second, third, and fourth moments under this utility is translated

into relative risk aversion between 5 and 10 when power utility is assumed8.

Since the distribution of asset returns in this model is not solely determined by mean and

variance and managerial compensation is convex, the utility taking account of the probability

distribution of wealth up to the fourth moments is used and considered more appropriate than

other standard utility forms. Although the mean-variance criterion is the best known and wildly

used, the mean-variance portfolio theory is only applicable if preference is quadratic or asset

returns follow normal distributions. The assumption on normal distributions contradicts the

main theme of this study and the quadratic utility carries an unrealistic assumption of increasing

absolute risk aversion. Numerous researchers also argue that the if the higher moments are

relevant to investment decisions and the mean-variance assumptions are violated, the higher

moments cannot be ignored (Arditti (1967,1971), Samuelson (1970), and Rubinstein (1973)).

In addition, earlier literature demonstrates that mean-variance analysis fails when volatility to

mean ratio is high or tail risks are considered (Hanoch and Levy (1970), Tsiang (1972), Scott

and Horvath (1980), and Kane (1982)). Standard utility forms are also not appropriate in this

study. Power utility fails to deal with negative wealth or face the possibility of bankruptcy and

the assumption of constant absolute risk aversion for exponential utility is violated.

8According to Kane (1982), the skewness ratio and kurtosis ratio for the power utility are equal to 1+γ and

(1+γ)(2+γ), respectively. γ is the relative risk aversion and skewness (kurtosis) ratio reflects preference for the

third (fourth) moment relative to aversion to variance. Thus, the range of skewness ratio is between 6 and 11 and

kurtosis ratio is between 42 and 132 for γ = 5 and 10. Parameters for risk tolerance used in the model suggest

skewness ratio and kurtosis ratio to be 10 and 100, respectively
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Since the optimization problem above has no closed-form solution, I following Patton (2004)

to numerically solve the asset allocation problem. The details are in the Appendix A.

C Monte Carlo Results

Figure 1 presents the optimal weight for the market portfolio and the big bet. Figure 2 shows

the snapshot of the optimal weight with respect to α and g, i.e. the return decomposition and

convexity effect. Figure 3 displays the optimal skewness and kurtosis for a fund.

Figure 1: The Optimal Weight on the Market Portfolio

The return decomposition parameter α and the convexity parameter g are the weight of systematic returns and the magnitude of convexity on

the fund manager’s compensation, respectively. z-axis is the optimal unconditional weight.
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Figure 2: The Return Decomposition and Convexity Effect on the Optimal Weight for the Market

Portfolio and the Big Bet

The graphs on the top panel show the return decomposition effect on the market portfolio (left) and the big bet (right). The graphs on the bottom

panel show the convexity effect on both assets. The snapshot is taken as the average weight across g and α.
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Figure 3: The Optimal Fund Skewness and Kurtosis
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The model predicts that as convexity in the contract increases (i.e. g increases), fund managers will

increase weights on the idiosyncratic big bet and thus reduce fund skewness and increase fund kurtosis.
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On the other hand, if the fund managers’ compensation ties more to the systematic returns (i.e. α in-

creases), more weights will be allocated to the market portfolio to increase fund skewness and reduce

fund kurtosis.

The interpretation is as follows. Consider two types of fund managers in the economy: conservative

and aggressive. A fund manager whose compensation depends more on the systematic components of

returns (i.e. a larger α) can be viewed as the conservative one. The fund manager for ETFs is one example.

The model predicts that conservative managers prefer positive skewness of funds. The greater skewness

and lower kurtosis will increase expected utility. On the contrary, when a fund manager is entitled with

a more convex compensation scheme (i.e. a larger g), their investment styles are more aggressive. HFs

are the example. The model predicts that the aggressive fund managers prefer idiosyncratic tail risks by

lowering skewness and increasing kurtosis to improve the expected returns for the next period.

According to the model’s predictions, HFs’ skewness and kurtosis should come mostly from the

idiosyncratic component, as the increased g induces more weights on the idiosyncratic big bet. The

increased weight on the idiosyncratic part in turn lowers the skewness and raises the kurtosis of the fund.

ETFs are represented by higher α and lower g. Figure 4 implies that ETFs exhibit positive skewness and

lower kurtosis. OEFs and CEFs are associated with α and g between 0 and 1. OEFs can have lower

α and higher g than CEFs, i.e. fund managers for OEFs are rewarded for higher idiosyncratic returns

from stock-picking and convexity. Therefore, the weight of the idiosyncratic component on total fund

skewness and kurtosis should follow the following order: HFs, OEFs, CEFs, and ETFs.

One intriguing implication from the model is that if the incentive contracts depend mostly on idiosyn-

cratic returns with little convexity (i.e. α and g are both very low) , the model suggests that fund managers

will invest mostly in the idiosyncratic big bet to increase expected returns. This risk-taking behavior can

induce relatively negative skewness and large fat-tailedness. However, it is hard to find this type of funds

since most funds’ compensation relies on convexity and systematic returns to some degrees.

This model does not incorporate agency costs or transparency, which I also outline as potential causes

for differences in tail risks across investment funds. Incorporating them requires a setting of delegation

from an investor to a fund manager in the model. However, these factors can be interpreted as more

aggressive investment styles due to stronger misalignment of interests between investors and fund man-

agers. This misalignment will result in more aggressive investments on the idiosyncratic assets with tail

risks and induce lower fund skewness and higher fund kurtosis when the compensation payoff is more

option-like, i.e. as g increases.

V The Data

The literature has documented the following biases in the investment fund datasets and they might differ

across fund types and bias results on tail risks.

Incubation bias is referred to as fund families start several new funds, but only open funds that succeed
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in the evaluation period to the public. Evans (2007) shows that incubated mutual funds outperform non-

incubated funds. Incubation creates upward bias on fund returns. When a fund enters to the database, its

past return history is automatically added to the database. This addition of past returns causes backfilling

bias and it can bias fund performance upwards and risk downwards.

Stale prices mean that reported asset prices do not reflect correct true prices, possibly due to illiq-

uidity, non-synchronous trading, or bid-ask bounce. These characteristics can cause serial-correlation in

returns. HFs suffer from this bias the most , due to their fund characteristics in lockups and redemption

notification periods.

The survival probability of funds depends on past performance (Brown and Goetzmann (1995)).

Managers who take significant risk and win will survive. Therefore, the database is left with high risk

and high return surviving funds. If a study includes only funds that survive until the end of the sample

period, survivorship bias occurs. The survivorship bias imparts a downward bias to risk, and an upward

bias to alpha (e.g. Carhart (1997), Blake and Timmermann (1998)).

The survivorship bias is more complex for HFs. HFs may decide to stop reporting because of liq-

uidation or self-selection (Ter Horst and Verbeek (2007), Jagannathan, Malakhov, and Novikov (2010)).

Liquidation refers to underperforming funds exiting the database. Self-selection is associated with a

fund’s decision to be included in the database. For instance, outperforming HFs have less incentives to

report performance to attract new investors and fund managers may switch to another data vendor for

marketing purposes.

The look-ahead bias arises when funds are required to survive some minimum length of time after

a reference date. One type of look-ahead bias applicable to this study is the look-ahead benchmark bias

(Daniel, Sornett, and Wohrmann (2009)). Since the time series of stylesare not kept in the database,

funds that change styles over time may suffer from the look-ahead benchmark bias. This omission can

bias risk-adjusted returns and risks.

The aforementioned biases can apply to ETFs and CEFs as well. For instance, ETFs and CEFs are

subject to look-ahead benchmark biases since no data vendors keep the history of their classification

codes. In addition, CEFs may suffer from survivorship bias, due to its commonly observed discounts on

traded prices. Although the exit rate for ETFs is low, survivorship bias might still affect their analysis on

tail risks.

The ETFs, OEFs, CEFs, and HFs in this study are investment funds managed in the U.S. The list

of ETFs and CEFs domiciled in the U.S. are screened out from Morningstar database, including both

live and dead funds. Monthly returns of ETFs and CEFs from the CRSP monthly stock return table are

merged with the list of funds from Morningstar database. ETFs and CEF returns start from 1993 and

1929, respectively. Monthly OEF returns are from CRSP U.S. survivorship-free mutual fund database.

The CRSP mutual fund data start in 1962. HF sample is constructed by combining both live and dead

funds from HFR database. The period for HFs starts from 1996. The end year for all four fund types is

2008. Investment funds with less than twelve months of returns are excluded and all investment funds

maintain the same investment strategy for at least twelve months. This restriction is because that fund
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managers are usually evaluated at the end of year and the minimum of 12 observations offer sufficient

degrees of freedom for GMM estimation 9.

ETFs and CEFs are from Morningstar survivorship free database. Although ETFs and CEFs might

suffer look-ahead benchmark bias, but it is unlikely these funds will change investment styles through

time, given funds’ characteristics10.

OEFs are from CRSP survivorship free database and portfolios of funds are constructed look-ahead

bias free. Monthly returns are used only after the beginning of the assigned style. No ex-post style returns

are used. I delete returns before the fund inception date to avoid incubation bias. This step follows from

Evans’ (2007) initial approach since I have no access to the complete list of mutual fund tickers and their

creation dates from NASD. I also delete fund returns for the first year to remove backfill bias.

HFs combine both live and dead fund returns from HFR to eliminate survivorship bias. I further drop

returns before the inception date to remove incubation bias. Aggarwal and Jorion (2010) use the data

field ”date added to database” in TASS dataset and find the median backfill period is 480 days. I adopt

the same approach to clean out back-filled HF returns.

Nevertheless, my attempts to control these ex-post conditional biases may be imperfect. By construc-

tion, HFs might still suffer limited look-ahead benchmark bias and I assume no change of styles in ETFs

and CEFs. Lack of NASD data might leave backfill bias in the mutual fund sample. In addition, it is

known that the coverage of HFs has little overlap across different data vendors. Relying on only HFR

data may not represent the whole HF industry.

Style classification codes for ETFs and CEFs are from Morningstar. The Morningstar classification

codes for ETFs and CEFs are commonly used on many financial websites and thus this information is

easily accessible to investors. For OEFs, I use the style classification codes in the CRSP mutual fund

database. The database uses five different classification codes to cover disjoint time periods. POLICY

codes are used before 1990. CRSP uses WIESENBERGER (WB OBJ) codes between 1990 to the end of

1992. Strategic Insight Objective (SI OBJ) codes cover from 1993 to September, 1998. Lipper Objective

(Lipper OBJ) codes are used up to 2008. Most recent funds are classified by Thomson Reuters Objective

(TR OBJ) codes. For HFs, HFR provides main and sub strategy classification codes for each fund. I use

main strategy classification codes.

Benchmark data are from the following sources. Market excess returns, SMB and HML factors are

obtained from Ken French’s website11. The momentum factor is downloaded from CRSP. The seven

HF factors 12 are downloaded from David Hsieh’s website13. The Barclay U.S. government/credit index

9There are one mutual fund (CRSP Fund ID 031241 in fixed income index and 01108 in fixed income govern-

ment) and two HFs (HFR Fund ID 17393 and 21981 in relative value) misspecified by the GMM estimation and

thus removed from this study. All four funds have no monthly returns outside 3 standard deviations from their

means. Removing these three funds has minimal effects on the univariate statistics of the style that they belong to.
10ETFs are index funds and CEFs do not allow the redemption of shares after IPO.
11http : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
12The equity and bond market factor, the size spread factor, two credit spread factors, and three lookback strad-

dles on bond futures, currency futures, and commodity futures.
13http : //faculty.fuqua.duke.edu/ dah7/DataLibrary/TF − FAC.xls.
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(LHGVCRP) and corporate bond index (LHCCORP) are downloaded from Datastream.

I form groups of funds by styles for analysis. Each group has the same styles of funds. ETFs and

CEFs are grouped by Morningstar styles14. OEFs are grouped by CRSP style codes15. HFs are grouped

by HFR main strategies16.

Table I summarizes univariate statistics of “average” funds across fund styles and types. By “aver-

age”, it means that statistics for individual funds in the same group are averaged to represent “average”

or individual fund statistics.

Tail risks are different at the aggregate and individual fund level17. HFs are the most negatively

skewed. ETFs are the least negatively skewed and fixed income ETFs show positive skewness. OEFs

and CEFs are in between. This order is predicted from the model, as the increased convexity and the

increased weight on idiosyncratic returns of the incentive contract predict lower skewness.

However, the order of kurtosis is not fully predicted by the model. As predicted, ETFs do have low

kurtosis and HFs do have high kurtosis. However, the level of kurtosis between HFs (ETFs) and CEFs

(OEFs) is close and not explained by the model.

At the individual fund level, there are variations in tail risks across fund styles within the same fund

type. It can be noted from the variation of the significance level of the Jarque-Berra test among fund

styles. A more striking result is that the significance level of rejecting normality drops significantly for

the average fund, compared to the equal-weighted portfolios of funds. Also, the Ljung-Box test fails

to reject serial correlation for the average fund. However, these results do not necessarily suggest that

individual funds do not exhibit negative skewness, excess kurtosis, or serial correlation. The number of

monthly returns for the average fund is much lower than that of the portfolios of funds.

14Equity ETFs: Global, Currency, Sector, Balanced, Bear Market, Commodities, Large/Mid/Small Cap,

Growth/Value, and Others. Fixed Income ETFs: Global, Sector, Long Term, Intermediate Term, Short Term,

Government, High Yield, and Others. Equity CEFs are Global, Balanced, Sector, Commodities, Large/Mid/Small

Cap, Growth/Value, and Others. Fixed Income CEFs are Global, Sector, Long Term, Intermediate Term, Short

Term, Government, High Yield, and Others
15Equity funds are classified as Index, Commodities, Sector, Global, Balanced, Leverage and Short, Long Short,

Mid Cap, Small Cap, Aggressive Growth, Growth, Growth and Income, Equity Income, and Others. Fixed in-

come funds are classified as Index, Global, Short Term, Government, Mortgage, Corporate, and High Yield. The

classification methodology is in Appendix B.
16Equity Hedge, Event-Driven, Fund of Funds, HFRI Index, HFRX Index, Macro, and Relative Value. Descrip-

tions of these investment strategies are available available from HFR at http://www.hedgefundresearch.com.
17The tabulated summary of univariate statistics of equal-weighted portfolios of funds is available upon request.

Note that since portfolios are constructed by averaging fund returns in the same group equal-weightedly at each

point of time, fund characteristics may appear different from those of individual funds.
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VI Empirical Design

A Frequency of Tail Returns

If an investment fund is well diversified, the distribution of returns should be close to normal, i.e. its

skewness is zero and kurtosis is 3. However, table I suggests that tail returns and risks do exist in in-

vestment funds. Possible reasons are option-like managerial compensation, the limited liability of fund

managers, the use of leverage, options or any assets with non-normality, hedging and stop-loss trading,

asymmetric risk preferences, etc. One direct approach to observe tail returns and risks in investment

funds is to measure the frequency of tail returns in a given fund.

Tail returns of an individual fund are defined as its monthly returns above or below 3 and 5 standard

deviations from their mean. Äit-Sahalia (2004) estimates the probability of observing one jump condi-

tional on a large log-return. The sources of the large log-return can come from a continuous Brownian

part or a discontinuous jump part. He concludes that as far into the tail as 3.5 standard deviations, a

large observed log-return can still be produced by the Brownian noise only. A large log-return above 3.5

standard deviations in a finite time would help identify at least one jump. As such, I use 3 and 5 stan-

dard deviations as thresholds to determine tail returns. A fund with a high frequency of monthly returns

exceeding 5 standard deviation suggests that jumps can be identified in the fund returns. This statistics

offers an indirect evidence to compare frequencies of jumps across fund types since returns at the monthly

frequencies do not have enough power to identify jumps via the maximum likelihood approach.

For each fund, the frequency of tail returns is calculated as the percentage of monthly returns exceed-

ing 5 and 3 fund standard deviations from their means. This measure is similar to the statistical R2 in

regression analysis and can reflect tracking errors and idiosyncratic risks induced by trading strategies.

Furthermore, I decompose funds’ monthly returns into systematic and idiosyncratic components and

compute the percentage of monthly systematic and idiosyncratic returns exceeding 5 and 3 standard

deviation of their respective means. A fund with a higher frequency of systematic tail returns reflect its

fund manager tends to deviate from the market or β is far from 1. If a fund shows a higher frequency of

idiosyncratic tail returns, its manager prefer taking idiosyncratic risks to increase fund performance.

Let COUNTi,ti be one if fund i’s monthly return on month ti is greater than 3 or 5 standard devi-

ation from its mean. I derive the test statistics of the frequency of tail returns for fund i by assuming

that COUNTi,ti follows the Bernoulli distribution and the sequence of COUNTi,ti is independent and

identically distributed, i.e. COUNTi,ti is 1 with probability p and 0 otherwise on each month. Thus, at

the individual fund level, the frequency of tail returns and its test statistics can be represented as follows:

Xi =
1

Ti

Ti∑

ti=1

COUNTi,ti ∼ N(p,
p(1− p)

Ti
)
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where Ti is the total observations for fund i and ti = (1, 2, ..., Ti) ∈ Ti. At the style or type level,

Ys =
1

Ns

Ns∑

i=1

Xi ∼ N(p,
1

N2
s

(
∑

i

p(1− p)

Ti
+
∑

i

∑

j 6=i

ρtail

√

p(1− p)

Ti

√

p(1− p)

Tj
))

where Ns is the number of funds in the style or type s and ρtail is the average correlation of tail returns

among funds. I calculate ρtail as follows. If returns across the fund style in a single month are jointly

within 3 standard deviations from their means, all returns in that month are dropped to compute correla-

tions. Then average correlations across funds in the same style to derive ρtail. ρtail reflects correlation

from economy-wide shocks affecting all funds at the extreme states.

To compare any two fund styles or types (Ys and Yr) at the aggregate level:

Ys − Yr ∼ N(0, var(Ys) + var(Yr)− 2cov(Ys, Yr))

cov(Ys, Yr) =
1

NsNr

∑

i

∑

j

ρtail

√

p(1− p)

Ti

√

p(1− p)

Tj

B Systematic and idiosyncratic risk

B.1 The Benchmarks

Different fund styles and types have different levels of systematic risk and are exposed to different risk

factors. Therefore, a broad-based index is not the appropriate benchmark to decompose risk into sys-

tematic and idiosyncratic components across fund styles and types. CEF returns are subject to discounts

and therefore any risk factors capturing cross-sectional variations of discounts would be priced. ETFs

track market indexes and are most sensitive to market factors directly associated with the benchmarks

they track. Because OEFs follow long-only and buy and hold strategies in order to beat their benchmarks,

standard asset classes may be appropriate market factors. HFs have no benchmarks and fund managers

simply tend to maximize total fund returns due to high watermark provisions. In addition, different

HF styles pursue different directional/nondirectional trades and dynamic trading strategies, and differ in

option-like payoffs. These HF characteristics lead to distinctive risk profiles among HFs and compared

to other fund types.

Inappropriate factors may lead to a misleading measure of systematic and idiosyncratic risk decom-

position. Roll (1978), Lehmann and Modest (1987), and others demonstrate that performance measure

is likely to be sensitive to the choice of a benchmark. If the chosen market factors don’t appropriately

explain the the variations of systematic components of returns, too much idiosyncratic risk is mistakenly

identified. Then empirical results will spuriously show fund skewness and kurtosis mostly come from the

idiosyncratic component of returns.

I use the equal-weighted portfolios of funds to proxy for the market portfolio and to decompose

systematic and idiosyncratic components of returns. This market proxy is used to study fund performance
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(e.g. Grinblatt and Titman (1994), Brown, Goetzmann, and Ibottson (1999), Ackermann, McEnally,

Ravenscraft (1999), and Fung and Hsieh (2000)).

The advantages of using the portfolios of funds within the same style as benchmarks include the

following: First, the ideal factor-mimicking portfolios should have the smallest idiosyncratic risk and

they are empirically testable. The portfolios of funds are observable and capture diversification effects 18.

The portfolios of funds have the lowest idiosyncratic tail risks.

Second, valuable services are credited to a fund manager when the investment opportunity set is

expanded by the trading strategy of the fund. Therefore, the reference portfolios should share common

assets with the fund. For example, if the Janus Balanced Fund trades growth stocks and U.S. Treasury,

both types of securities should be included in the reference assets. The portfolios of funds represent a

joint set of reference assets for funds within the same trading strategy.

Third, many fund managers in the same style make similar bets or share similar trading strategies.

Therefore, funds in the same style may be exposed to the same “priced” factors and controlling for them

helps identify outperforming funds. The portfolios of funds are constructed by funds within the same

style and can capture the time-series and cross-sectional variation of a common systematic risk within

this style. Hunter, Kandel, Kandel, and Wermers (2010) use fund returns in the same group to construct

an endogenous benchmark and show that the endogenous benchmark introduces a “priced” factor in

addition to the Fama-French 3 factors. The endogenous benchmark can capture a common component in

the variation over time and across funds within the group.

In addition, return characteristics and distributions differ across fund styles and types and the port-

folios of funds capture distinctive differences. For example, HFs exhibit nonlinearities in returns and

magnitudes of nonlinearities differ across HF styles. An index constructed by the funds in the same style

helps control style-specific features of returns to decompose systematic and idiosyncratic components.

Fourth, the portfolios of funds create a peer group of managers who pursue the same style. Fund

managers are increasingly evaluated relative to a performance benchmark specific to their style, instead

of a broad-based benchmark. An inappropriate benchmark can induce incorrect measurement of relative

performance. For example, a small-cap fund manager may underperform relative to a broad market index,

but overperform relative to a small stock benchmark.

B.2 The Decomposition

I run the following regression to decompose the systematic and idiosyncratic components of risks:

Ri,t − E(Ri) = αi + βi(Rp,t − E(Rp)) + ui,t (6)

Ri,t and Rp,t are returns for fund i and portfolio of funds p at time t. The portfolios of funds are

constructed based on the investment styles outlined in section V. Therefore, βi(Rp,t − E(Rp)) and ui,t

18The kth order moment of portfolios of funds is O( 1

nk−1 ). As n → ∞, E[Rp − E(Rp)]
k = E[ 1

n

∑
Ri −

1

n

∑
E(Ri)]

k = 1

nkE[
∑

Ri −
∑

E(Ri)]
k ≤ n

nk
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stand for the systematic and idiosyncratic component of de-meaned returns for fund i. Both components

are orthogonal to each other.

The simple linear regression in (6) is advantageous to study systematic and idiosyncratic tail risks 19.

Under this single factor model, the skewness of ri can be decomposed as follows:

E(r3i ) = E[(βirp + ui)
3]

= β3
i E(r

3
p) + 3β2

i E(r
2
pui) + 3βiE(rpu

2
i ) + E(u3i )

= β2
i cov(ri, r

2
p) + 2β2

i cov(ui, r
2
p)

︸ ︷︷ ︸

COSKEW

+3βicov(u
2
i , rp)

︸ ︷︷ ︸

ICOSKEW

+ E(u3i )
︸ ︷︷ ︸

RESSKEW

(7)

where ri and rp are de-meaned returns, i.e. ri = Ri − E(Ri) and rp = Rp − E(Rp). According to

(7), the skewness decomposition consists of three parts: coskewness (COSKEW), idiosyncratic coskew-

ness (ICOSKEW), and residual skewness (RESSKEW). Since both COSKEW and ICOSKEW contain

β and covary with the market, I refer to them as systematic tail risks. The residual skewness represents

idiosyncratic tail risk. Rubinstein (1973), Kraus and Litzenberger (1976), Harvey and Soddique (2000),

and Vanden (2006) all demonstrate the importance of coskewness effects on asset pricing. Note that

coskewness in this study is defined as the sum of two covariance terms - the covariance of fund returns

and the covariance of fund residuals with market volatility. The latter is small under the assumption of

orthogonality between the systematic and idiosyncratic components in the one-factor regression.

Moreno and Rodrı́guez (2009) show that coskewness is managed and the coskewness policy is per-

sistent over time. In their remark, “managing coskewness” refers to having a specific policy regarding

the assets incorporated in to the funds portfolio to achieve higher or lower portfolio coskewness. If a

manager consistently adds negative skewness to the fund by incorporating negative coskewness assets,

the fund will exhibit negative coskewness and investors will demand a higher risk premium.

The idiosyncratic coskewness, i.e. the covariance between idiosyncratic volatility and market returns,

is advocated by Chabi-Yo (2009). The idiosyncratic coskewness is motivated to explain two market

anomalies. First, idiosyncratic coskewness is related to idiosyncratic volatility premium. If idiosyncratic

coskewness is positive, stocks with high idiosyncratic volatility have low expected returns. Ang, Hodrick,

Xing, and Zhang (2006, 2009) raise this idiosyncratic volatility puzzle. If idiosyncratic coskewness is

negative, stocks with high idiosyncratic volatility have high expected returns. This relation matches

conventional intuition. Second, idiosyncratic coskewness can help explain the empirical finding that

distressed stocks have low returns (Chabi-Yo and Yang (2009)).

19If I add the quadratic terms to (6), i.e. Ri,t − E(Ri) = αi + βi(Rp,t − E(Rp)) + γi(Rp,t − E(Rp))
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Chabi-Yo (2009) also proves that idiosyncratic coskewness is equivalent to a weighted average of

individual stock call and put betas. Coval and Shumway (2001) show that out-of-money calls (puts) have

larger positive (negative) betas and lower expected returns. It can be shown that in a single factor model,

during market upswings (rp > 0), idiosyncratic coskewness is positive and idiosyncratic risk premium

is negative; during market downswings (rp < 0), idiosyncratic coskewness is negative and idiosyncratic

risk premium is positive. In other words, stocks whose option betas with high sensitives to market returns

have low average returns because they hedge against market upswings and downswings. Out-of-money

options written on these stocks have large betas or higher sensitivities with market returns. Investors

prefer options written on stocks with lottery-like returns.

Note that cov(u2i , rp) is equivalent to cov[E(u2i |rp), rp] or E[E(u2i |rp)rp]. This decomposition im-

plies that the sign and the magnitude of ICOSKEW depends on the risk-return relation and the level of

conditional heteroscedasticity. If an asset has high (low) idiosyncratic risk/conditional heteroscedasticity

and its risk is negatively correlated with market returns, adding this asset to a fund will increase negative

skewness through a large (small) negative ICOSKEW.

Mitton and Vorkink (2007) and Barberis and Huang (2008) document that idiosyncratic skewness is

priced and its relation with expected returns is negative. Boyer, Mitton, and Vorkink (2009) empirically

test the negative relation between idiosyncratic skewness and expected returns.

Similarly, the decomposition of kurtosis is derived as follows:
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This decomposition displays four sources of fund kurtosis: cokurtosis (COKURT), comovements

of volatility (VOLCOMV), idiosyncratic cokurtosis (ICOKURT), and residual kurtosis (RESKURT).

COKURT, VOLCOMV, and ICOKURT are exposed to the market and are classified as systematic tail

risks. The residual kurtosis is considered as idiosyncratic tail risk. The importance and validity of cokur-

tosis on asset returns are documented by Christie-David and Chaudhry (2001) and Dittmar (2002). Note

that cokurtosis defined in this study contains the covariance between residual returns and market skew-

ness, but it is assumed to be small, compared to the covariance between total returns and market skewness.

The cokurtosis of an asset can impact the total kurtosis of the fund. Investors dislike fat-tails in

returns and thus demand a positive risk premium on an asset with large kurtosis. Such an asset will

increase the total kurtosis of the fund. If a manager constantly adopts the strategy of buying positive

cokurtosis assets, the fund will show a large weight on cokurtosis in the kurtosis decomposition. In

addition, since cokurtosis reflects the covariance between market skewness and individual fund returns, a

positively cokurtosised fund indicates a positive relation between the fund return and the skewness of the

market returns.
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The VOLCOMV term can be viewed as the comovement of volatility between the fund and market

returns. The concept of comovement of volatility is often applied to the studies across international

markets20. However, the comovement of volatility between the market and a fund can be interesting.

Fund managers are known to use market-timing and market volatility timing strategies (eg. Treynor and

Mazuy (1966), Henriksson and Merton (1981) and Busse (1999)). From the hedging perspective, if an

investor’s portfolio is exposed to the market, adding a fund which comoves with market volatility can be

suboptimal due to dispersion to kurtosis. Since kurtosis is the variance of the variance, a fund manager

can add assets with high volatility comovements with the market to increase the kurtosis of the fund.

When a fund exhibits a large VOLCOMV component, it implies that using comovements of volatility is

a common strategy for this fund.

Following Chabi-Yo (2009), I refer to the covariance between idiosyncratic skewness and market

returns as idiosyncratic cokurtosis. Like idiosyncratic coskewness, idiosyncratic cokurtosis can be inter-

preted as a weighted average of individual security call and put betas. For a single factor model, market

upswings imply positive option betas and thus positive idiosyncratic cokurtosis.

cov(u3i , rp) can be rewritten as cov[E(u3i |rp), rp] or E[E(u3i |rp)rp]. The idiosyncratic cokurtosis is

implicitly embedded with a skewness-return relation and the magnitude of conditional heteroskewticity.

Conditional heteroskewticity is a property of residual returns. If an asset has high (low) idiosyncratic

skewness/conditional heteroskewticity and its skewness is negatively correlated with market returns,

adding this asset will decrease fund kurtosis through a large (small) negative ICOKURT.

Chabi-Yo (2009) extends his analysis to higher moments and concludes that higher moment premium

is driven by individual security call and put betas. Although idiosyncratic kurtosis premium is not well

documented in the literature, a fund with a larger weight on idiosyncratic kurtosis in the decomposition

implies that its manager has more flexibility in what and how to trade. For example, since HF managers

constantly use higher leverage and dynamic strategies, and are able to invest in a wider class of assets,

HFs should exhibit a larger weight on RESSKEW and RESKURT.

B.3 The GMM Estimation for Skewness and Kurtosis Decompositions

The error terms of the time-series regression in (6) may suffer from heteroscedasticity, autocorrelation,

and non-normality, and thus result in inefficient β coefficients and biased standard errors. Furthermore,

funds in the same group share commonalities in risk and strategies, and thus the error terms may be

correlated across funds and subject to possible fixed effects and clustering. Hansen’s (1982) general-

ized method of moments (GMM) is the most robust estimation technique to allow for heteroscedasticity,

autocorrelation, non-normality, and cross-sectional correlation in error terms. Therefore, I adopt GMM

methodology to estimate components of skewness and kurtosis decompositions.

The vector of unknown parameters for the skewness decomposition are βi, µi, µp, COSKEWi,

ICOSKEWi, and RESSKEWi, for i = 1...N . N is the number of funds in the same fund style. µp is

20See, for example, Hamao, Masuli, and Ng (1990) and Susmel and Engle (1994).
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the expected return for the portfolio of funds. µi is the expected return for fund i. Following equation (6)

and (7), moment conditions for skewness are the following:

ri,t = Ri,t − µi

rp,t = Rp,t − µp

ui,1t = (Rp,t − µp)(ui,t)

ui,2t = COSKEWi − β3
i r

3
p,t − 3β2

i (r
2
p,tui,t)

ui,3t = ICOSKEWi − 3βi(rp,tu
2
i,t)

ui,4t = RESSKEWi − u3i,t

Similarly, the following moment conditions are used to estimate βi, µi, µp, COKURTi, V OLCOMVi,

ICOKURTi, and RESKURTi in the kurtosis decomposition in equation (6) and (8).

ri,t = Ri,t − µi

rp,t = Rp,t − µp
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The decomposition (%) for skewness and kurtosis are reported in table III and IV, respectively.

VII Empirical Results

Table II presents the frequencies of tail returns exceeding 3 and 5 standard deviations across fund types.

For the average fund, the frequencies of total tail returns range from 1.78% (CEFs) to 1.10% (OEFs) and

0.13% (CEFs) to 0.01% (ETFs) for the 3 and 5 standard deviations, respectively 21. Both ranges exceed

the probability under the normal distribution - 0.27% and less than 0.0001%, respectively. This result

substantiates the existence of tail risks in managed portfolios.

The test statistics of four fund types fail to reject the 4% (1%) frequencies of tail returns at the 3

21The results for 2 standard deviations are also available upon request. Across fund types, the frequencies of

total tail returns ranges from 4.74% and 5.6%; the frequency of both systematic and idiosyncratic tail returns is

very close to 5%.

26



(5) standard deviations at the 1% significance level. This suggests that on a monthly basis, all four fund

types are subject to returns above or below 3 (5) standard deviations with 4% (1%) probability. In view

of economic significance, investors will face monthly returns 3 standard deviations from their means

approximately every two years.

The range of the frequencies on idiosyncratic tail returns is narrower than those on systematic tail

returns. Using the 3 standard deviations, CEFs have the highest frequencies of tail returns on both return

components22. ETFs show higher frequencies of systematic tail returns, but the lowest frequencies of

idiosyncratic tail returns. The frequencies for both systematic and idiosyncratic tail returns at the 5

standard deviations follow the same order as total tail returns. The classic portfolio theory suggests that

idiosyncratic tail risks can be diversified away by increasing the number of assets. It is interesting to see

that managed funds suffer from both systematic and idiosyncratic tail risks at similar frequencies.

The high frequencies of tail returns in CEFs and HFs imply that both fund types have higher tracking

errors and their managers trade on individual assets to take higher idiosyncratic risks to increase perfor-

mance. ETFs exhibit higher frequencies of systematic tail risks than HFs and OEFs since tracking errors

and idiosyncratic risks should be minimized for ETFs. From an investor’s perspective, investors suffer

more systematic risks by investing in ETFs, but more idiosyncratic risks in HFs and OEFs.

The comparisons of frequencies of tail returns across fund types do not show strong statistical sig-

nificance at 1% significance level, except for equity CEFs and ETFs for the 3 standard deviations. This

indicates that investors should be aware of tail risks not only on HFs, but all four fund types. For fixed

income funds, the frequencies of total tail returns and systematic tail returns is in the following order:

CEFs, OEFs, and ETFs. ETFs have the highest frequencies of idiosyncratic tail returns at the 3 stan-

dard deviations, but the lowest frequencies at the 5 standard deviations. For equity funds, CEFs have the

highest frequencies of total tail returns, systematic tail returns, and idiosyncratic tail returns.

The comparison of styles across fund types shows that fixed income global funds consistently have

the higher frequencies of tail returns than the fixed income government funds23. This difference may

be due to a more strict monitoring and control policy over U.S. fixed income instruments by the U.S.

government agencies. Fixed income high yield funds are subject to high tail risks among fixed income

styles. Currencies or foreign exchanges funds also show high frequencies in tail returns. The size seems

matter in tail risks as well. Equity larger cap funds are subject to higher total tail risks and systematic tails

risks, but lower idiosyncratic risks than the smaller cap funds. Table I also shows that the larger cap funds

exhibit lower skewness and higher kurtosis than the smaller cap funds. On the hand, the book-to-market

ratios (growth vs. value) do not seem to offer a consistent comparison of frequencies on tail returns.

I further break down the percentage of monthly tail returns by right and left tails. The striking finding

is that most tail returns come from the left tails. There is very low frequency of right-tailed tail returns

22One concern is that the recording of the last return due to delisting varies across data vendors. One reason for

CEFs to have higher frequencies may be due to traded price discounts. However, the order of frequencies still hold,

if the last observation is removed for the analysis.
23The frequencies of tail returns exceeding 3 and 5 standard deviations at the individual fund level are available

upon request.
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(less than 0.45% (0.04%) at the 3 (5) standard deviations) across fund styles and types. All the statistical

patterns observed from two-sided tail returns are induced by the left-tails. This evidence supports the

importance of downside risk and the prevalence of negative skewness and leptokurtosis across fund types.

Table III reports the skewness decomposition across fund types. The first column (EW Portfolio

Skewness) is the total skewness for the equal-weighted portfolios of funds. The second column (Indi-

vidual Skewness) is the average of total skewness across all funds in a given style. The weight of each

decomposed component is computed by dividing individual funds’ coskewness, idiosyncratic coskew-

ness, and residual skewness by their total fund skewness. I report the average across all funds within the

same style in percentage as individual COSKEW (%), ICOSKEW (%), and RESSKEW (%), respectively.

The equal-weighted portfolio skewness and average skewness can be different. The only exception

is fixed income funds, which have both values being close. Equal-weighted portfolios of funds are con-

structed by using all available observations in the same style on a given month, but number of funds has

been changing from time to time. If the attrition rate is high through time, this can create more skewed

distributions for the equal-weighted portfolios of funds. HFs are one example.

It is interesting to observe negative skewness and excess kurtosis (except ETFs) at both the aggregate

and individual fund levels. The economic theory suggests that risk aversion with constant or decreas-

ing absolute risk aversion implies preference to positive skewness and aversion to kurtosis. Therefore,

managed portfolios showing negative skewness and excess kurtosis may be a result of agency costs and

risk-taking induced from compensation schemes as suggested by the model. Another possible explana-

tion is the diversification effects. Simkowitz and Beedles (1978) and Conine and Tamarkin (1981) show

that diversification causes an undesirable increase in negative return skewness and this explains why in-

vestors hold limited number of stocks. However, the comparisons of skewness and kurtosis across fund

styles suggests trade-offs between variance-skewness-kurtosis.

COSKEW is the most important source of skewness across fund types. CEFs allocate weights almost

equally on the three components of skewness. The individual COSKEW, ICOSKEW, and RESSKEW are

40.48%, 33.32%, and 26.21%, respectively. ETFs have almost a 80% weight on COSKEW. OEFs’ skew-

ness mostly comes from COSKEW (75.05%) and shows a negative weight on ICOSKEW (-8.11%). HFs

also have a negative weight on ICOSKEW (-10.20%) and the largest weight on COSKEW (65.93%).

However, HFs’ weight on RESSKEW (44.29%) is the largest among fund types. This may reflect the

broad individual assets HFs can hold, and the leverage and dynamic strategies HFs can undertake. Over-

all, COSKEW contributes the most to investment funds’ skewness.

COSKEW still stands out as the largest weight of skewness decomposition when comparing fixed

income and equity funds across fund types. Fixed income OEFs have a relatively large negative weight

on ICOSKEW, and a relatively large positive weight on RESSKEW relative to fixed income CEFs and

ETFs. The result on ICOSKEW may suggest that fixed income assets in OEFs have volatility more

sensitive to market returns and the relation between fund risk and market returns is positive. The larger

weight on RESSKEW implies that the manager for a fixed income OEF manages skewness through

individual assets. For instance, the turnover of assets for short-term and high yield funds can be high.
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Equity ETFs and OEFs consistently have their largest shares in COSKEW. Equity CEFs’ allocated

weights on three components are close, with the largest weight on RESSKEW.

The comparison of the same style across fund types shows no consistency in the decomposition. For

instance, the equity global funds have the largest weight in COSKEW for OEFs, but most of skewness

of the same style for CEFs come from RESSKEW. This inconsistency shows that different types of

investment funds rely on different patterns of trading strategies.

The sign and magnitude of each component in the skewness decomposition can be determined by

multiplying individual COSKEW (%), ICOSKEW (%), and RESSKEW (%) by the average skewness.

CEFs, ETFs, OEFs, and HFs all have negative coskewness and negative residual skewness. This result

denotes that investment fund returns and the market volatility move in opposite directions and fund man-

agers add individual assets with negative skewness. Investors will demand higher expected returns to

compensate funds with negative coskewness and residual skewness.

The sign of ICOSKEW depends on the contemporary relation between idiosyncratic risk and market

returns. The relation can be positive or negative. The negative and large idiosyncratic coskewness of a

fund means that assets’ idiosyncratic risks in the fund is negatively correlated with and more sensitive to

market returns. Empirical studies show that small growth firms have high idiosyncratic volatility; large

value firms are low idiosyncratic volatility stocks.

OEFs and HFs have a negative sign on ICOSKEW (%) (positive values of ICOSKEW), but CEFs

and ETFs have a positive sign on ICOSKEW (%) (negative values of ICOSKEW). HFs and OEFs have

posititive relations, but ETFs and CEFs have negative relations. The magnitude of idiosyncratic coskew-

ness tells the asset characteristics a fund trades. The comparision implies that HFs and CEFs prefer small

growth stocks and ETFs and OEFs prefer large value stocks.

Table IV presents the results from kurtosis decomposition. Similar to table III, the EW portfolio

kurtosis and the individual kurtosis are the total excess kurtosis for portfolios of funds and the total

excess kurtosis averaged across funds in the same style, respectively. In general, the excess kurtosis for

the individual fund is lower than the kurtosis for portfolios of funds. The average ETF and OEF fund has

excess kurtosis below 3 and CEFs and HFs exhibit large kurtosis. This result confirms with the analysis

on the frequencies of tail returns. Across fund types, the kurtosis for fixed income funds is consistently

larger than that of equity funds. In particular, equity ETFs and equity OEFs show less fat-tailedness than

other fund types.

COKURT (41.4%) and VOLCOMV (35.62%) contribute the most to the kurtosis of CEFs, even for

fixed income and equity CEFs. COKURT is the most important contributor to ETFs’ kurtosis, both for

fixed income and equity ETFs. OEFs have the largest weight in COKURT as well, for both fixed income

and equity OEFs. HFs rely more on RESKURT (39.60%), and then VOLCOMV (33.81%). Across all

fund styles and types, the influence from ICOKURT on total fund kurtosis tends to be the minimum.

Similar to skewness, fund managers can use COKURT, VOLCOMV, ICOKURT, and RESKURT to

manage the total kurtosis of funds. Results show that managed portfolios have positive cokurtosis, posi-

tive volatility comovements, and positive residual kurtosis. Investors will demand higher risk premiums
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for such funds due to dispersion to kurtosis. Like the analysis on skewness, agency costs allow a manager

to take tail risks (low skewness and high kurtosis) to generate risk-adjusted returns.

Similar to ICOSKEW, the sign of ICOKURT also depends on the contemporary relation between the

idiosyncratic skewness of the fund and market returns. A positive sign for ICOKURT implies a positive

relation, i.e. an increase in market returns will add kurtosis to the fund. A large negative ICOKURT

implies that the relation between idiosyncratic skewness and market returns is negative and assets’ id-

iosyncratic skewness is highly sensitive to market returns. Small growth firms are positively skewed;

large value firms are negatively skewed.

CEFs and OEFs have negative values for ICOKURT, but ETFs and HFs exhibit positive values. Fur-

thermore, the covariance between idiosyncratic skewness and market returns can be inferred from the

sign of ICOKURT. Except HFs, other fund types have negative covariance relations. The comparison of

the magnitude of ICOKURT across fund types suggests that HFs and CEFs tend to trade small stocks, but

ETFs and OEFs trade larger stocks.

An interesting finding is that the magnitude of COSKEW and COKURT is ranked in reverse or-

der across investment funds since investors demand higher risk premiums on assets with more negative

coskewness or more positive cokurtosis. HFs have the lowest negative coskewness but the lowest positive

cokurtosis. CEFs have the largest negative coskewness but the largest cokurtosis. A possible explanation

is the trade-off between cokurtosis and volatility comovement or residual kurtosis. This trade-off further

suggests the importance of coskewness, volatility comovement, and residual kurtosis in fund tail risks.

Another possible explanation is diversification. Diversification across coskewed and cokurtosised assets

can reduce coskewness and cokurtosis. HFs are more diversified than other fund types in this aspect.

The significance level of each component in the kurtosis decomposition is higher than that in the

skewness decomposition. RESKURT and VOLCOMV are statistically significant at 5% for most fund

styles and types. It seems that fund managers manage high kurtosis assets and assets comoving with

the market volatility. On the other hand, three components of the skewness decomposition yield low

statistical significance.

The decomposition of unconditional higher moments of funds can help understand the trading strate-

gies commonly used by fund managers within the same group and priced risks across fund types. If a

fund manager tends to add negatively coskewed assets to increase expected returns, one would observe

negative coskewness in this fund. If a fund manager often chooses assets with high idiosyncratic volatil-

ity or negative idiosyncratic skewness, this fund will exhibit more weights on either component. If the

skewness or kurtosis of a fund comes mostly from the idiosyncratic component of returns, one can con-

clude that this fund manager uses individual assets to increase fund expected returns. If a fund’s common

trading strategy is to rely on comovements in volatility between the assets and the market, the source of

kurtosis of this fund will mostly come from the comovement of volatility component.

ETFs’ compensation schemes are tied more to the systematic returns with no convexity, but the con-

tract for fund managers who are rewarded to great stock-picking skills is tied more to the idiosyncratic

returns. Based on model predictions, across fund types, HFs (ETFs) should be subject to the idiosyncratic
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risk the most (least). Some OEFs are subject to explicit incentive fees and their assets have been growing

(Elton, Gruber, and Blake(2003)). Moreover, the fund-flow performance for OEFs is well documented

in the literature. It suggests implicit convexity in their contracts. This implicit convexity might also ex-

ist in CEFs to a lesser degree due to no redemption. But the compensation for CEFs has more weight

on idiosyncratic returns than ETFs, because of active management in CEFs and index-tracking in ETFs.

The weight in percentage for idiosyncratic skewness risk for HFs, OEFs, CEFs, and ETFs are 44.29%,

26.21%, 33.06%, and 5.74%, respectly. This result conincides with model’s prediction.

For the kurtosis decomposition, HFs, CEFs, OEFs, and ETFs have weights in idiosyncratic kurtosis

risk as follows: 39.60%, 11.90%, 23.45%, and 10.30%. Although the model’s predictions cannot clearly

distinguish closed-end and OEFs, HFs and ETFs are still in line with the predictions.

The total fund skewness from low to high is HFs, OEFs, CEFs, and ETFs. This ranking is predicted

by the model. The total fund kurtosis for CEFs is the highest, but only slightly above HFs. Figure 3

suggest that it is possible if the α (the return decomposition parameter) and g (the convexity parameter)

for CEFs on average is close to 0. OEFs have the lowest kurtosis, but very close to ETFs. The model fails

to predict this result, but it can be attributed to the assumed range of α and g for an average OEF. It is

premature to verify the reasonings, given that no empirical studies document values for alpha and g for

various fund styles and types.

The order of weights in idiosyncratic skewness and kurtosis risk holds across fixed-income and eq-

uity funds. The weights for fixed-income funds across ETFs, CEFs, and OEFs are 7.62%, 11.33%, and

78.15%, respectively, for the skewness decomposition. The kurtosis decomposition also shows that fixed-

income ETFs have the lowest weight (13.30%) on the idiosyncratic component. Equity ETFs have the

lowest weights across fund types on idiosyncratic skewness and kurtosis risk - 4.48% and 8.29%, re-

spectively. The order of skewness holds across different types of fixed-income funds, but the result for

kurtosis is mixed across different types of equity funds.

The empirical results and model predictions are in line with Starks (1987). She concludes that the

“symmetric” contract does not necessarily eliminate agency costs , but it better aligns the interests be-

tween investors and managers than the “bonus” contract. Since ETFs use a symmetric contract and HFs

use a bonus contract, the alignment of interests is worse for HFs but agency costs still exist in both funds.

This implication is reflected in the differences in skewness and kurtosis between these two types of funds.

ETFs are less negatively skewed and fat-tailed. HFs are more negatively skewed and more leptokurtic.

ETFs are subject to more systematic tail risks and HFs are subject to more idiosyncratic tail risks.

In addition to compensation schemes, the leverage effect by Black (1976) and volatility feedback

may help understand each component of skewness and kurtosis decompositions across fund strategies.

Both the leverage effect and volatility feedback suggest the negative relation between risks and return.

The leverage effect means that a drop in price will increase leverage within the firm and thus increase

future volatility. If a fund uses high leverage, the impact of the leverage effect is magnified. The volatility

feedback theorizes that if volatility is persistent and priced, an increase in volatility today will incur an

increase in future volatility and required rate of returns. Since shocks to market volatility have a longer
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memory in illiquid assets, illiquidity can amplify volatility feedback effect. Funds subject to the leverage

effect and volatility feedback may exhibit long and left tails.

Another perspective on explaining differences in tail risks across investment funds is the level and

type of risks the funds face. For example, high-yield bond funds face credit risk, which can cause large

downside tails. Funds with large market exposure are less negatively skewed. A fund strategy may be

subject to multiple sources of risk, such as market risk, interest rate risk, credit risk, and liquidity risk, etc.

This type of fund will be more left-skewed and fat-tailed because the dependence of risks is multiplied

during market downturns and its price tumbles.

Types of assets traded in a fund can also induce differences in skewness and kurtosis across fund

strategies. For instance, longing a call or put can increase skewness and writing a call or put can reduce

skewness. Since small cap and value stocks are positively skewed on average, adding them can increase

the skewness of a fund.

The comparison of the same strategy across fund types show many puzzling findings. It is intuitive

that fixed-income government funds has less negative coskewness (positive cokurtosis) and fixed-income

corporate funds and mortgage funds show more negative coskewness (positive cokurtosis).

The duration risk would suggest that long-term funds have more negative coskewness and more pos-

itive cokurtosis than short-term funds. However, the coskewness of long-term ETFs is positive, but the

coskewness of short-term ETFs is negative. One possible explanation is liquidity, i.e. long-term bonds

that ETFs track are more liquid than the short-term bonds.

High yield bonds are subject to interest rate risk and credit risk. However, high yield bonds do not

have the largest negative coskewness and the largest positive cokurtosis within the same fund type. It

is possible that the high yield bonds held in investment funds have shorter durations close to short-term

funds. More surprisingly, high yield ETFs and OEFs have positive coskewness. This result may reflect

that the redemption requirement on both types of funds force fund managers to trade only liquid high

yield bonds and use less leverage.

The fixed-income global and sector funds mainly concentrate on one country or sector and diversify

assets within that country or sector. This trading strategy implies more weights on systematic tail risks

but less weights on residual tail risks. However, global OEFs are one exception. They have around 80%

in residaul skewness. This result indicates that the global funds traded by OEF managers are highly

correlated with other funds in the same country and thus idiosyncratic tail risks are not diversified away.

The magnitude of coskewness and cokurtosis is hard to interpret across and among investment funds

because countries and sectors are not further subclassified according to their risks. Funds investing in

developed countries and matured industries are less asymmetric and fat-tailed.

On the contrary, the equity global and sector funds across fund types do consistently show more

weights on systematic tail risks and less weights on idiosyncratic tail risks. This result suggests that across

fund types, diversification takes place within the same sector or country for equity funds. In addition, the

correlation among equity assets within the same country or sector is lower than fixed-income funds.

Commodity funds include a wide variety of commodities: oil, gold, soy, corn, natural gas, etc. Some
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funds may only engage in commodity futures. A comparison of coskewness and cokurtosis across CEFs

and OEFs show that commodity CEFs have lower coskewness and higher cokurtosis. This finding indi-

cates that CEF managers tend to trade illiquid commodities due to privilege of no redemption.

Large risk premiums are associated with small cap stocks, implying negative coskewness and positive

cokurtosis. However, empirical results do not reflect this implication uniformly. Small cap CEFs do have

lower coskewness and higher cokurtosis than large cap CEFs, but small-cap and large-cap funds have

similar coskewness and cokurtosis in ETFs and OEFs.

According to value risk premiums, value stocks generally perform better than growth stocks in the

past decades. Therefore, similar to small cap stocks, value stocks would demand higher risk premiums.

However, another argument is that growth stocks are growing firms and subject to more event risks, such

as redemption, bankruptcy, etc., than stable firms. The empirical results on tail risks agree with both

arguments. Cokurtosis is higher for value funds and coskewness is lower for value ETFs. This result

coincides with the value premium hypothesis. However, coskewness is positive and higher for growth

CEFs. This result matches with the latter argument.

The bear funds or funds with leverage and short strategies show improved coskewness and cokurtosis.

Both strategies make profits from market downturns. The long put option dominates the leverage effect

to induce higher coskewness and lower cokurtosis.

Agarwal and Naik (2004) show that event-driven and relative value strategies of HFs can be viewed

as writing at the out-of-the-money put option and going long on small and value stocks and short on

large and growth stocks. In addition, relative value strategies also show a negative loading on Carhart’s

momentum factor, indicating that these strategies buy losers and sell winners. Event-driven strategies

include transactions, such as financial distress, mergers and acquisitions, restructuring, etc. These trans-

actions incur huge losses when markets are down. Relative value strategies mainly bet on undervalued

firms to turn around or overvalued firms to go south. These strategies will lose money during market

downturns. Both strategies have implicit short position in put and thus show relatively low skewness and

high kurtosis. However, the high residual skewness in relative value strategies show that their fund man-

agers manage skewness through individual assets across HF strategies. This result is consistent with the

fund strategies since relative value strategies search for mispriced assets with similar fundamental values.

Equity hedge strategies are shown by Agarwal and Naik (2004) to have a positive (negative) and

statistically significant loading on Fama and French’s size (value) factor. Equity hedge strategies involve

both long and short positions in equity and equity derivative securities. Since small and high book-

to-market stocks are likely to be distressed, longing small and growth stocks can offset skewness and

kurtosis. Equity hedge strategies exhibit negative skewness close to zero and the lowest kurtosis. The

lowest values for each component of the skewness and kurtosis decompositions across HF strategies are

the result of hedged positions.

HFs classified under HFRI or HFRX are funds used to construct respective benchmark indexes, but

are not classified under the five main HF strategies. Therefore, these funds represent their strategies and

are shown to have large weights on coskewness. However, the exclusion from main categories indicate
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that these funds are subject to specific extreme event risks, such as credit risk, interest risk, etc. Therefore,

these funds are more negatively skewed and fat-tailed, funds under the HFRX category in particular. The

large magnitude of idiosyncratic coskewness implies high covariability between idiosyncratic skewness

and market returns and their strategies are highly sensitive to extreme event risks.

Macro strategies invest in equity, fixed income, currency, and commodities based on predicted move-

ments of economic variables. Therefore, funds with macro strategies use high-frequency trading and have

liquidity in assets. This trading pattern is reflected in the positive skewness and low kurtosis of macro

funds. Like fixed-income ETFs, macro funds are ideal candidates for investors. Since the addition of

macro funds can improve investors’ portfolio skewness and kurtosis, macro strategies can be viewed as

longing options. In addition, the positive value and the largest weight of residual skewness and residual

kurtosis in macro funds across HF strategies indicate that their fund managers add individual positively

skewed assets with some kurtosis to improve total fund skewness and kurtosis.

Fund of funds have low skewness and mild kurtosis. Fund of funds invest in a pool of HFs and are

supposed to diversify away idiosyncratic risks. By contrast, idiosyncratic skewness risks are relatively

large. This conflicting result may be explained by multi-layer agency costs.

VIII Robustness Analysis

A An Application of the Model on Mutual Funds

All moments in the model in section IV are standardized. One set of parameters from mutual funds is

applied to the model. Brown, Goetzmann, Ibbotson, and Ross (1992) simulate mutual fund returns by the

following:

Ri,j = rf + βi(Rp,j − rf ) + ǫi,j (9)

where the risk free rate is 0.07 and the risk premium is assumed to be normal with mean 0.086 and

standard deviation 0.208. βi follows the normal distribution with mean 0.95 and standard deviation 0.25

cross-sectionally. The idiosyncratic term ǫi,j is assumed to be normal with mean 0 and standard deviation

σi. The relationship between nonsystematic risk and βi is approximated as:

σ2
i = k(1− βi)

2 (10)

The value of k is 0.05349. Note that βi(Rp,j − rf ) and ǫi,j are equivalent to rp,j and rBB,j in the

model, representing systematic and idiosyncratic components of returns. I implement these parameters

into the model and the model predicts the same result on the relation between the return decomposition

(convexity) effect and the optimal weight on the market portfolio and the big bet.
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Figure 4: The Optimal Weight on the Market Portfolio and the big bet

The return decomposition parameter α and the convexity parameter g are the weight of systematic returns and the magnitude of convexity on

the fund manager’s compensation, respectively. z-axis is the optimal unconditional weight.

B Autocorrelation

Stale pricing or serial correlation of returns have the most significant impact on HFs than other fund

types. Due to the unique characteristics of HFs, such as limited regulations and the lockup and notice

periods, HF managers have more flexibility in trading illiquid assets. Since current prices may not be

available for illiquid assets, HF managers commonly use past prices to estimate current prices. As a

result, the presence of illiquid assets can lead to significant serial correlation on HF returns. This link is

supported by Getmansky, Lo, and Makarov (2004), who conclude that illiquidity and smoothed returns

are the main source of serial correlation in HFs. The existence of serial correlation in returns can affect

HF performance and statistics (Lo (2002) and Jagannathan, Malakhov, and Novikov (2010)).

Following Asness, Krail, and Lieu (2001) and Getmansky, Lo, and Makarov (2004), let the true but

unobserved demeaned return satisfy the following regression:

r∗i,t = β∗
i rp,t + u∗i,t, E(u∗i,t) = 0, rp,t and u∗i,t are i.i.d.

I use three lags to model autocorrelations of the observed demeaned returns. The observed demeaned
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return ri,t is thus modeled as:

ri,t = θ0r
∗
i,t + θ1r

∗
i,t−1 + θ2r

∗
i,t−2

= β∗
i (θ0rp,t + θ1rp,t−1 + θ2rp,t−2) + (θ0u

∗
i,t + θ1u

∗
i,t−1 + θ2u

∗
i,t−2)

= β0,iθ0rp,t + β1,iθ1rp,t−1 + β2,iθ2rp,t−2) + ηi,t

= (β0,i + β1,i + β2,i)(Rp,t − µp) + ũi,t

The last equation is used by Asness, Krail, and Lieu (2001) to compute the “summed beta” Sharpe

ratios for HFs. They estimate coefficients by the second to last equation and consider the summation of

three coefficients as the true beta. They therefore compute the “summed beta” residuals as

ũ∗i,t = ri,t − β̃∗
i (Rp,t − µp)

where β̃∗
i is the true or “summed beta”, i.e. β̃∗

i = β0,i + β1,i + β2,i. I follow the same approach to

construct moment conditions. After adjusted for stale prices, GMM moment conditions are modified as

follows:

For skewness decomposition:

ri,t = Ri,t − µi

rp,t = Rp,t − µp

ui,1t = (Ri,t − µi − β0,i(Rp,t − µp)− β1,i(Rp,t−1 − µp)− β2,i(Rp,t−2 − µp))(Rp,t − µp)

ui,2t = (Ri,t − µi − β0,i(Rp,t − µp)− β1,i(Rp,t−1 − µp)− β2,i(Rp,t−2 − µp))(Rp,t−1 − µp)

ui,3t = (Ri,t − µi − β0,i(Rp,t − µp)− β1,i(Rp,t−1 − µp)− β2,i(Rp,t−2 − µp))(Rp,t−2 − µp)

ui,4t = COSKEWi − β̃∗
i

3
r3p,t − 3β̃∗

i

2
(r2p,tũ

∗
i,t)

ui,5t = ICOSKEWi − 3β̃∗
i (rp,tũ

∗2
i,t)

ui,6t = RESSKEWi − ũ∗3i,t

For kurtosis decomposition:
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ri,t = Ri,t − µi

rp,t = Rp,t − µp

ui,1t = (Ri,t − µi − β0,i(Rp,t − µp)− β1,i(Rp,t−1 − µp)− β2,i(Rp,t−2 − µp))(Rp,t − µp)

ui,2t = (Ri,t − µi − β0,i(Rp,t − µp)− β1,i(Rp,t−1 − µp)− β2,i(Rp,t−2 − µp))(Rp,t−1 − µp)

ui,3t = (Ri,t − µi − β0,i(Rp,t − µp)− β1,i(Rp,t−1 − µp)− β2,i(Rp,t−2 − µp))(Rp,t−2 − µp)

ui,4t = COKURTi − β̃∗
i

4
r4p,t − 4β̃∗

i

3
(r3p,tũ

∗
i,t)

ui,5t = V OLCOMVi − 6β̃∗
i

2
(r2p,tũ

∗2
i,t)

ui,6t = CONSKTi − 4β̃∗
i (rp,tũ

∗3
i,t)

ui,7t = RESKURTi − ũ∗4i,t

The decomposition (%) for skewness and kurtosis are reported in table VI. Overall, results for tail

risk decomposition are robust to autocorrelation. The weight on RESSKEW increases slightly and the

weight on RESKURT stays almost the same. COSKEW and RESSKEW are still the top two contributors

on skewness decomposition. The components of VOLCOMV and RESKURT occupy the most weights

in total fund kurtosis.

C Exogenous Systematic Factors

Different fund types are subject to different exogenous systematic factors due to differences in risk char-

acteristics. ETFs are passive and index-tracking, and therefore returns are highly correlated with market

factors. The premiums on CEFs are related to market risk, small-firm risk, and book-to-market risk (Lee,

Shleifer, and Thaler (1991), Swaminathan (1996), Pontiff (1997)). Carhart (1994) shows that momen-

tum plays an important role in mutual fund performance. Non-linearities in HF returns may suggest

some systematic factors representing option-like payoffs (Fung and Hsieh (2001) and Agarwal and Naik

(2004)).

Following the literature, I use Fama-French 3-factor model for equity ETFs and CEFs, Carhart 4-

factor model for equity OEFs and Fung and Hsieh 7 factor model for HFs. For bond fonds, I add two

more Barclay bond indexes - the Barclay U.S. government/credit index and corporation bond index.

Fama-French 3 factors are value-weighted market excess returns, and two factor-mimicking portfolios

SMB and HML. SMB and HML measure the observed excess returns of small caps over big caps and of

value stocks over growth stocks. Carhart adds the momentum factor on top of Fama-French 3 factors. The

momentum factor is constructed by the monthly return difference between one-year prior high over low

momentum stocks. Fung and Hsieh 7 factors include the equity and bond market factor, the size spread
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factor 24, the credit spread factors 25, and three lookback straddles on bond futures, currency futures, and

commodity futures.

For simplicity, this paper adopts the single-factor model to illustrate economic intuitions on compo-

nents of skewness and kurtosis decompositions. I construct beta-weighted time series of aforementioned

factors to decompose systematic and idiosyncratic tail risks. Table VI and VII show the results. 26

First, COSKEW contributes the most to total fund skewness, except HFs. COKURT is the most

contributing source to total fund kurtosis for ETFs and OEFs. In addition, HFs (ETFs) have the largest

(smallest) weight on RESSKEW and RESKURT. Second, RESSKEW and RESKURT tend to be higher

for fixed income funds when beta-weighted exogenous factors are used. This spurious result may be

induced by missing bond factors, such as a high-yield index or a global bond index.

D Year 1996-2008

The starting period of four fund types differs in this study. However, the time-variation of economic states,

such as changes in yields and business cycles, may impose differential impacts of “economy-wide” shocks

on funds. Using the same time intervals for all four fund types can ascertain that all funds are subject to

the same economic shocks at any time. If the pattern of skewness and kurtosis decomposition in section

III and IV holds, the weight of each component should be robust to the same starting period. Therefore, I

restrict all investment funds to have the same starting date as HFs and perform GMM on this subsample

of data.

The results hold, when I restrict the dataset for all funds between the period from 1996 to 2008 only.

Note that this period also excludes the 1987 stock market crash. COSKEW contributes the most to the

skewness of all fund types. COKURT and VOLCOMV have the largest two shares in kurtosis decom-

position for CEFs, ETFs, and OEFs. HFs’ kurtosis comes mostly from the VOLCOMV and RESKURT.

However, at the style level of each fund type, few fund styles have different allocated weights in skewness

and kurtosis decompositions. It may imply that each component is time-varying at the style level. But

at the aggregate fund type level, the weight on each component stays the same. In addition, HFs (ETFs)

have the largest (least) weights on idiosyncratic tail risks.

24Wilshire Small Cap 1750 - Wilshire Large Cap 750 return.
25month-end to month-end change in the difference between Moody’s Baa yield and the Federal Reserve’s 10-

year constant-maturity yield.
26I also use equal-weighted exogenous factors but across all fund types and styles, RESSKEW and RESKURT

consistently have the largest weights among all components in both skewness and kurtosis decompositions. This

spurious result reflects that equal-weighted exogenous factors do not appropriately capture time-variation in system-

atic tail risks. A further analysis on the correlation between equal-weighted portfolios of funds and equal-weighted

exogenous factors shows that the decomposition of the systematic and idiosyncratic tail risks is sensitive to the

chosen benchmarks, i.e. low correlation between the endogenous and exogenous benchmarks implies the increased

weights on RESSKEW and RESKURT. All results are available upon request.
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IX Conclusion

Different styles and types of managed portfolios execute different strategies and objectives. Traditional

fund managers can make investment decisions based on returns and volatility of different individual

assets. They can also adjust exposures to systematic factors or asset classes, such as size, book-to-

market, or momentum. However, many stylized facts on financial asset returns refute the validity of

the mean-variance framework and market-timing and stock-picking strategies can induce systematic and

idiosyncratic tail risks.

This study shows that managed portfolios are subject to tail risks. The frequencies of tail returns

shows that CEFs and HFs are subject to more total tail risks. ETFs show a disparity in the frequencies

between the systematic and idiosyncratic tail returns. Therefore, fund managers may manage systematic

and idiosyncratic tail risks through investing in assets with desired properties and tail risks. For instance, a

manager can generate abnormal returns by adding assets with negative coskewness or positive cokurtosis

or selecting negatively skewed or positively kurtosised assets. The skewness and kurtosis decompositions

show the mechanisms fund managers may use to manage tail risks.

Skewness and kurtosis decompositions introduce important economic components. Skewness is de-

composed into coskewness, idiosyncratic coskewness, and residual skewness. Coskewness and idiosyn-

cratic coskewness are relatively important in the total fund skewness, but all three components do not

show statistical significance. Likewise, kurtosis can be decomposed into four components - cokurtosis,

volatility comovement, idiosyncratic cokurtosis, and residual kurtosis. The volatility comovement and

residual kurtosis contribute the most to the total fund kurtosis at a statistically significant level. Results

of the skewness and kurtosis decompositions are robust to benchmarks used.

The fund tail risks are linked to compensation structure across fund types through a simple model.

There are two main determinants of compensation schemes - the decomposition between the systematic

and idiosyncratic returns (the return decomposition effect), and the convexity or degree of option-like

payoffs (the convexity effect). The model predicts that the increased weight on systematic returns can

increase market exposures, and in turn increase total skewness and decrease total kurtosis. In addition, in-

creased convexity can increase idiosyncratic tail risks, and thus reduce asymmetry and raise fat-tailedness.

Empirical results confirm both predictions.

A Appendix

A The Numerical Procedure for the Optimization Problem

Fund managers observe returns up to time t and solve for the optimal unconditional weight based on

those returns. Steps are the following:

(a) Generate 10,000 jointly independent random variables (U,V) from the T-Copula.
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(b) Use the inverse method to generate time-series of returns for the market portfolio and the big bet,

i.e. F−1
p (U) and F−1

BB(V ), where F−1
p and F−1

BB are inverse CDFs for the normal and skewed

t-distribution, respectively.

(c) Solve for the optimal weight:

wuncond,t ≡ argmax
1

t

j=t
∑

j=1

U(Wj) (11)

(d) Simulate step (a) to (c) 1000 times.

B Open-ended Fund Styles

I consider funds with the following style codes are fixed income funds - POLICY in B&P, Bonds, Flex,GS,

or I-S; WB OBJ in I, S, I-S, S-I, I-G-S, I-S-G, S-G-I, CBD, CHY, GOV, IFL, MTG, BQ, BY, GM, or GS;

SI OBJ in BGG, BGN, BGS, CGN, CHQ, CHY, CIM, CMQ, CPR, CSI, CSM, GBS, GGN, GIM, GMA,

GMB, GSM, or IMX; , Lipper Class in ’TX’ or ’MB’; Lipper OBJ in EMD, GLI, INI, SID, SUS, SUT,

USO, GNM, GUS, GUT, IUG, IUS, ARM, USM, A, BBB, or HY ; and TR OBJ in AAG, BAG, GLI,

BDS, GVA, GVL, GVS, UST, MTG, CIG, or CHY. I further screen out funds with holdings in bonds and

cash less than 70% at the end of the previous year.

Fixed income funds (FI) are classified as Index, Global, Short Term, Government, Mortgage, Corpo-

rate, and High Yield. Index funds (FI Index) are selected by matching the string “index” with the fund

name. Global funds are coded as SI OBJ in BGG or BGN, Lipper OBJ in EMD, GLI, or INI, or TR OBJ

in AAG, BAG, or GLI.

Short term funds are coded as SI OBJ in CSM, CPR, BGS, GMA, GBS, or GSM, Lipper OBJ in

SID, SUS, SUT, USO, or TR OBJ in BDS. Government funds are codes as POLICY in GS, WB OBJ

in GOV or GS, SI OBJ in GIM or GGN, or Lipper OBJ in GNM, GUS, GUT, IUG, or IUS, or TR OBJ

in GVA, GVL, GVS, or UST. Mortgage funds are coded as POLICY WB OBJ in MTG, GM, SI OBJ

in GMB, Lipper OBJ in ARM or USM, or TR OBJ in MTG. Corporate funds are coded as POLICY in

B&P, WB OBJ in CBD,BQ, SI OBJ in CHQ, CIM, CGN, CMQ, Lipper OBJ in A, BBB, or TR OBJ

in CIG. High Yield funds are coded as POLICY in Bonds, WB OBJ in I-G-S, I-S-G, S-G-I, BY, CHY,

SI OBJ in CHY, Lipper OBJ in HY, TR OBJ in CHY. Other funds are funds that I classify as bond funds

but do not meet the criteria above.

Similarly, I use the following codes to screen out equity funds - POLICY in Bal, C & I, CS, Hedge,

or Spec; WB OBJ in G, G-I, I-G, AAL, BAL, ENR, FIN, GCI, GPM, HLT, IEQ, INT, LTG, MCG,

SCG, TCH, UTL, AG, AGG, BL, GE, GI, IE, LG, OI, PM, SF, or UT; SI OBJ AGG, BAL, CVR, ECH,

ECN, EGG, EGS, EGT, EGX, EID, EIG, EIS, EIT, EJP, ELT, EPC, EPR, EPX, ERP, FIN, FLG, FLX,

GLD, GLE, GMC, GRI, GRO, HLT, ING, JPN, OPI, PAC, SCG, SEC, TEC, or UTI; Lipper Class in

EQ; Lipper OBJ in SP, SPSP, AU, BM, CMD, NR, FS, H, ID, S, TK, TL, UT, CH, CN, CV, DM, EM,
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EU, FLX, GFS, GH, GL, GLCC, GLCG, GLCV, GMLC, GMLG, GMLV, GS, GSMC, GSME, GSMG,

GSMV, GNR, GTK, IF, ILCC, ILCG, ILCV, IMLC, IMLG, IMLV, IS, ISMC, ISMG, ISMV, JA, LT, PC,

XJ, B, BT, CA, DL, DSB, ELCC, LSE, SESE, MC, MCCE, MCGE, MCVE, MR, SCCE, SCGE, SCVE,

SG, G, GI, EI, EIEI; and TR OBJ in AAD, AAG, AGG, BAD, BAG, CVT, EME, ENR, EQI, FIN, FOR,

GCI, GLE, GPM, GRD, HLT, MID, OTH, SMC, SPI, TCH, UTL. I further screen out funds with holdings

in bonds and cash less than 70% at the end of the previous year.

Equity funds (EF) are classified as Index, commodities, Sector, Global, Balanced, Leverage and

Short, Long Short, Mid Cap, Small Cap, Aggressive Growth, Growth, Growth and Income, Equity In-

come, and Others. Index funds (EF Index) are identified by finding the match of the string “index” within

the fund name or funds with Lipper OBJ in SP or SPSP, or TR OBJ in SPI.

Commodities funds are coded as WB OBJ in ENR, GPM, PM, SI OBJ in GLD Lipper OBJ in AU,

BM, CMD, NR, or TR OBJ in ENR, GPM. Sector funds are codes as POLICY in Spec, WB OBJ in FIN,

HLT, TCH, UTL, SF, UT, SI OBJ in FIN,HLT, Lipper OBJ in FS, H, ID, S, TK, TL, UT, or TR OBJ in

FIN, HLT, OTH, TCH, UTL. Global funds are coded as POLICY in C & I, WB OBJ in INT, GE, IE,

SI OBJ in ECH, ECN, EGG, EGS, EGT, EGX, EID, EIG, EIS, EIT, EJP, ELT, EPC, EPX, ERP, FLG,

GLE, JPN, PAC, Lipper OBJ CH, CN, DM, EM, EU, GFS, GH, GL, GLCC, GLCG, GLCV, GMLC,

GMLG, GMLV, GS, GSMC, GSME, GSMG, GSMV, GNR, GTK, IF, ILCC, ILCG, ILCV, IMLC, IMLG,

IMLV, IS, ISMC, ISMG, ISMV, JA, LT, PC, XJ, TR OBJ in EME, FOR, GLE. Balanced funds are coded

as POLICY in Bal, WB OBJ in AAL, BAL, BL, SI OBJ in BAL, CVR, FLX, Lipper OBJ in B, BT, CV,

FLX, or TR OBJ in AAD, BAD, AAG, BAG, CVT. Leverage and short funds are coded as POLICY in

Hedge, WB OBJ in OI, SI OBJ in OPI, or Lipper OBJ in CA, DL, DSB, ELCC, SESE. Long short funds

are coded as Lipper OBJ in LSE. Mid cap funds are coded as WB OBJ in GMC, Lipper OBJ in MC,

MCCE, MCGE, MCVE, TR OBJ in MID. Small cap funds are coded as WB OBJ in SCG, Lipper OBJ

in MR, SCCE, SCGE, SCVE, SG, or TR OBJ in SMC. Aggressive growth funds are coded as WB OBJ

in GI, GCI, SI OBJ in AGG, or TR OBJ in AGG. Growth funds are coded as WB OBJ in G,LG, SI OBJ

in GRO, Lipper OBJ in G, or TR OBJ in GRD. Growth and income funds are coded as WB OBJ in GI,

GCI, SI OBJ in GRI, Lipper OBJ in GI, or TR OBJ in GCI. Equity income funds are coded as WB OBJ

in EI, IEQ, Lipper OBJ in EI, EIEI, or TR OBJ in EQI. Other funds are funds that I classify as equity

funds but do not meet the criteria above.
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-0
.0
2
8
(-
0
.0
3
)

-0
.1
5
6
(-
0
.2
0
)

O
E

F
s

0
.0
2
0
(-
0
.3
6
)

1
.0
9
1
(-
1
.3
5
)

0
.0
1
0
(-
0
.3
6
)

1
.0
4
4
(-
1
.3
7
)

0
.0
3
3
(-
0
.3
5
)

0
.7
5
6
(-
1
.5
1
)
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Table III:

Skewness Decomposition by the Equal-weighted Portfolios across Fund Styles and Types

This table summarizes the skewness decomposition by using the equal-weighted portfolio of funds as market portfolio. EW portfolio

skewness is the skewness for equal-weighted portfolios of funds formed by funds in the same styles. Individual skewness is the cross-

sectional average of skewness of individual funds in each style. Skewness is the third central moment about the mean and computed

as E[r3i ]/σ
3

i . ri and σi are the demeaned return and standard deviation of fund i. COSKEW, ICOSKEW, and RESSKEW refer to the

following components in the skewness decomposition:

E(r3i ) = β2

i cov(ri, r
2

p) + 2β2

i cov(ui, r
2

p)
︸ ︷︷ ︸

COSKEW

+3βicov(u
2

i , rp)
︸ ︷︷ ︸

ICOSKEW

+ E(u3

i )
︸ ︷︷ ︸

RESSKEW

where rp is the demeaned return for the market portfolio. Individual COSKEW, ICOSKEW, and RESSKEW are the average of

estimated values from the above equation by GMM across individual funds and reported as percentages of the skewness of demeaned

fund returns E[r3i ]. FI and EF stand for fixed income and equity funds, respectively. Numbers in parentheses are t-values for

COSKEW, ICOSKEW, and RESSKEW against the hypothesis of zero weight. FI Average is the average of statistics across fixed-

income fund styles. EF Average is the average of statistics across equity fund styles. Group Average is the average of statistics across

all fund styles.

Styles EW Port Individual Individual Individual Individual

Skewness Skewness COSKEW (%) ICOSKEW (%) RESSKEW (%)

Panel A: Closed-End Funds

FI Global −1.512 −0.602 122.89 −12.21 −10.67

(−0.65) (−0.29) (0.32)

FI Sector −0.754 −0.399 105.95 −6.07 0.12

(−0.60) (−0.41) (−0.10)

FI Long Term −0.339 −1.224 57.37 40.49 2.14

(−0.33) (−0.61) (0.19)

FI Intermediate Term 0.749 0.203 −6.31 116.74 −10.43

(0.43) (0.32) (−0.22)

FI Short Term −0.419 −0.912 27.74 63.65 8.61

(−0.73) (−1.20) (−0.03)

FI Government −0.262 −0.185 32.15 36.76 31.09

(−0.14) (−0.31) (−0.59)

FI High Yield 0.296 −0.620 70.36 4.62 25.01

(−0.88) (−0.16) (−0.49)

FI Others −2.273 −1.656 43.16 12.03 44.81

(−1.16) (−0.65) (−0.10)

FI Average −0.564 −0.675 56.66 32.00 11.33

(−0.51) (−0.41) (−0.13)

EF Balanced −0.157 −0.780 72.21 25.29 2.49

(−0.99) (−0.45) (0.22)

EF Global 0.598 −0.059 16.66 70.76 12.59

(−0.74) (0.61) (0.36)

EF Sector −0.896 −0.162 53.60 19.99 26.41

(−0.99) (0.30) (−0.24)

EF Commodities 0.508 −1.136 50.18 66.73 −16.90

(−0.69) (−0.38) (0.01)

EF Large Cap 2.306 −0.698 3.07 −28.21 125.15
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Styles EW Port Individual Individual Individual Individual

Skewness Skewness COSKEW (%) ICOSKEW (%) RESSKEW (%)

(−1.01) (−0.25) (−0.14)

EF Mid Cap 0.247 −0.258 −67.72 77.61 90.10

(−0.41) (−0.25) (−0.47)

EF Small Cap 0.833 −0.138 68.26 9.26 22.48

(−1.26) (1.39) (−0.89)

EF Growth 0.789 −0.480 51.55 −19.30 67.76

(−1.11) (0.26) (−0.67)

EF Value −0.834 −0.996 −13.76 97.39 16.37

(−1.11) (−0.50) (−0.47)

EF Others −1.830 −1.426 41.24 24.17 34.59

(−1.07) (−0.33) (0.18)

EF Average 0.156 −0.613 27.53 34.37 38.10

(−0.94) (0.04) (−0.21)

Group Average −0.164 −0.640 40.48 33.32 26.21

(−0.75) (−0.16) (−0.17)

Panel B: ETFs

FI Global −1.016 −0.314 59.64 39.26 1.10

(−0.55) (0.93) (0.00)

FI Sector 0.924 0.826 103.91 −5.69 1.79

(1.20) (−0.47) (−0.32)

FI Long Term 1.178 0.945 122.79 −20.81 −1.98

(0.94) (−0.97) (0.21)

FI Intermediate Term 0.650 0.585 85.66 5.04 9.30

(0.75) (−0.86) (0.37)

FI Short Term 0.445 −0.252 46.24 25.57 28.20

(0.27) (−1.18) (−0.34)

FI Government 0.024 0.526 −45.66 123.15 22.51

(−0.01) (0.83) (0.20)

FI High Yield 0.531 0.654 106.86 −6.95 0.09

(0.66) (−1.15) (0.48)

FI Others −1.143 −1.078 101.51 −1.50 −0.01

(−1.33) (1.54) (0.49)

FI Average 0.199 0.236 72.62 19.76 7.62

(0.24) (−0.17) (0.14)

EF Balanced −0.041 −0.215 76.95 12.18 10.87

(−0.48) (0.52) (0.54)

EF Global −0.967 −0.733 87.30 4.00 8.70

(−1.33) (0.34) (0.38)

EF Sector −0.716 −0.726 71.30 27.25 1.45

(−1.07) (−0.50) (0.19)

EF Commodities −0.751 −0.892 81.85 18.00 0.15

(−1.61) (−0.40) (−0.08)

EF Large Cap −0.743 −1.310 87.54 12.13 0.33

(−1.55) (−1.11) (0.07)

EF Mid Cap −1.071 −1.194 88.21 10.39 1.41

(−1.46) (−1.07) (0.06)

EF Small Cap −1.023 −1.327 94.84 5.52 −0.36
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Styles EW Port Individual Individual Individual Individual

Skewness Skewness COSKEW (%) ICOSKEW (%) RESSKEW (%)

(−1.53) (−1.23) (−0.13)

EF Growth −0.121 −1.068 94.54 5.37 0.09

(−1.72) (−0.78) (−0.09)

EF Value −0.560 −1.413 93.09 6.51 0.40

(−1.57) (−0.77) (0.03)

EF Bear Market 0.917 0.676 62.21 17.30 20.50

(1.00) (0.88) (0.46)

EF Currency −1.362 −0.670 105.81 −11.26 5.45

(−0.60) (0.10) (−0.35)

EF Others −0.321 −0.737 75.58 19.59 4.82

(−1.16) (−0.47) (0.01)

EF Average −0.563 −0.801 84.93 10.58 4.48

(−1.09) (−0.37) (0.09)

Group Average −0.258 −0.386 80.01 14.25 5.74

(−0.56) (−0.29) (0.11)

Panel C: Open-Ended Funds

FI Index −0.167 −0.035 100.30 3.62 −3.92

(−0.16) (0.04) (−0.19)

FI Global −0.849 −0.556 85.77 −66.27 80.50

(0.06) (−1.13) (0.13)

FI Short Term −0.333 −0.890 45.00 −142.57 197.57

(−0.51) (−0.35) (−0.38)

FI Government −0.158 −0.138 69.42 8.48 22.10

(−0.67) (0.24) (−0.01)

FI Mortgage −0.315 −0.420 80.90 2.53 16.57

(−0.58) (−0.29) (−0.04)

FI Corporate −0.963 −0.580 113.87 −33.19 19.32

(−0.69) (−0.11) (0.07)

FI High Yield −0.776 −1.174 −32.05 −7.75 139.80

(−1.00) (−0.51) (0.06)

FI Others −0.095 0.286 48.69 −62.56 113.86

(0.00) (0.06) (0.41)

FI Average −0.457 −0.439 63.99 −37.22 73.23

(−0.44) (−0.25) (0.01)

EF Index 5.493 −0.966 95.55 2.39 2.05

(−1.45) (0.01) (−0.33)

EF commodities 0.155 −0.516 87.41 23.22 −10.63

(−1.07) (0.07) (−0.15)

EF Sector −0.569 −0.371 83.74 3.99 12.27

(−0.73) (−0.20) (0.04)

EF Global −0.918 −0.796 83.73 9.82 6.45

(−1.24) (−0.01) (−0.00)

EF Balanced −0.472 −1.098 88.85 17.72 −6.57

(−1.23) (−0.40) (−0.13)

EF Leverage and Short 2.351 −0.287 19.62 29.08 51.30

(−0.48) (−0.06) (−0.26)

EF Long Short −1.658 −0.980 76.09 −1.42 25.33
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Styles EW Port Individual Individual Individual Individual

Skewness Skewness COSKEW (%) ICOSKEW (%) RESSKEW (%)

(−1.69) (−0.72) (−0.26)

EF Mid Cap −0.494 −0.919 84.11 11.02 4.87

(−1.13) (−0.56) (0.06)

EF Small Cap −0.490 −0.741 103.62 −7.17 3.54

(−1.07) (−0.41) (0.07)

EF Aggressive Growth −0.405 −0.734 101.10 −5.18 4.08

(−1.05) (0.68) (0.07)

EF Growth −0.695 −0.812 81.57 14.60 3.83

(−1.30) (−0.31) (−0.00)

EF Growth and Income −0.997 −0.883 96.89 0.93 2.18

(−1.30) (−0.31) (−0.14)

EF Equity Income −0.944 −0.782 91.69 1.25 7.07

(−0.93) (−0.79) (0.06)

EF Others −0.567 −0.498 −40.20 143.89 −3.70

(−0.85) (0.73) (0.07)

EF Average −0.015 −0.742 75.27 17.44 7.29

(−1.11) (−0.16) (−0.07)

Group Average −0.176 −0.631 71.17 −2.44 31.27

(−0.87) (−0.20) (−0.04)

Panel D: Hedge Funds

Equity Hedge −0.302 −0.299 46.67 17.42 35.91

(−0.36) (−0.25) (0.04)

Event-Driven −1.899 −0.618 53.84 21.50 24.67

(−0.63) (−0.60) (0.06)

Fund of Funds −1.000 −0.981 42.13 10.99 46.88

(−0.93) (−0.92) (−0.32)

HFRI −1.074 −1.115 157.06 −95.69 38.63

(−0.64) (−0.79) (−0.17)

HFRX −2.257 −1.709 110.83 −23.03 12.20

(−0.57) (−1.70) (−0.71)

Macro 0.378 0.012 19.74 −20.42 100.68

(0.14) (0.14) (0.04)

Relative Value −4.219 −1.208 31.24 17.85 51.04

(−0.45) (−0.62) (−0.23)

Group Average −1.482 −0.845 65.93 −10.20 44.29

(−0.49) (−0.68) (−0.18)
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Table IV:

Kurtosis Decomposition by the Equal-weighted Portfolios across Fund Styles and Types

This table summarizes the kurtosis decomposition by using the equal-weighted portfolio of funds as market portfolio. EW portfolio

kurtosis is the kurtosis for equal-weighted portfolios of funds formed by funds in the same styles. Individual kurtosis is the cross-

sectional average of kurtosis of individual funds in each style. Kurtosis is the fourth central moment about the mean and computed

as E[r4i ]/σ
4

i − 3. ri and σi are the demeaned return and standard deviation of fund i. COKURT, VOLCOMV, ICOKURT, and

RESKURT refer to the following components in the kurtosis decomposition:

E(r4i ) = β3

i cov(ri, r
3

p) + 3β3

i cov(ui, r
3

p)
︸ ︷︷ ︸

COKURT

+6β2

i E(r
2

pu
2

i )
︸ ︷︷ ︸

V OLCOMV

+4βicov(u
3

i , rp)
︸ ︷︷ ︸

ICOKURT

+ E(u4

i ))
︸ ︷︷ ︸

RESKURT

where rp is the demeaned return for the market portfolio. Individual COKURT, VOLCOMV, ICOKURT, and RESKURT are the

average of estimated values from the above equation by GMM across individual funds and reported as percentages of the kurtosis of

demeaned fund returns E[r4i ]. FI and EF stand for fixed income and equity funds, respectively. Numbers in parentheses are t-values

for COSKEW, ICOSKEW, and RESSKEW against the hypothesis of zero weight. FI Average is the average of statistics across fixed-

income fund styles. EF Average is the average of statistics across equity fund styles. Group Average is the average of statistics across

all fund styles.

Styles EW Port Individual Individual Individual Individual Individual

Kurtosis Kurtosis COKURT (%) VOLCOMV (%) ICOKURT (%) RESKURT (%)

Panel A: Closed-End Funds

FI Global 11.897 6.080 52.09 37.14 −3.27 14.04

(1.12) (2.10) (0.19) (2.60)

FI Sector 3.395 4.611 19.84 41.68 5.24 33.24

(0.90) (1.77) (0.63) (2.86)

FI Long Term 7.365 8.322 43.68 37.20 −2.08 21.20

(0.66) (1.88) (0.05) (2.06)

FI Intermediate Term 5.568 5.443 29.75 44.91 2.92 22.42

(1.12) (2.21) (0.76) (3.24)

FI Short Term 1.814 4.361 12.36 54.30 3.88 29.47

(0.35) (1.58) (0.39) (2.35)

FI Government 2.390 2.305 14.97 38.31 8.46 38.25

(1.20) (2.13) (0.83) (2.51)

FI High Yield 5.445 3.708 47.57 36.53 −5.41 21.32

(1.56) (2.27) (−0.04) (2.59)

FI Others 11.743 6.415 67.79 22.50 −0.54 10.25

(1.36) (1.73) (0.21) (2.20)

FI Average 6.202 5.156 36.01 39.07 1.15 23.77

(1.03) (1.96) (0.38) (2.55)

EF Balanced 5.747 4.193 51.43 34.53 −1.24 15.29

(1.40) (1.96) (0.29) (2.50)

EF Commodities 5.801 2.725 30.94 40.01 3.98 25.07

(1.33) (2.21) (0.48) (2.84)

EF Global 4.882 4.424 18.35 41.89 3.87 35.89

(0.96) (2.04) (0.21) (2.40)

EF Sector 5.754 4.279 34.19 43.47 −6.02 28.36

(1.19) (1.82) (−0.41) (2.27)

EF Large Cap 27.479 5.530 45.49 39.45 −0.17 15.23
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Styles EW Port Individual Individual Individual Individual Individual

Kurtosis Kurtosis COKURT (%) VOLCOMV (%) ICOKURT (%) RESKURT (%)

(1.30) (1.85) (0.27) (2.62)

EF Mid Cap 2.958 4.565 29.65 36.43 5.81 28.10

(0.99) (1.92) (0.52) (2.51)

EF Small Cap 5.238 3.321 5.27 76.14 −16.61 35.21

(−0.43) (1.89) (−0.47) (3.32)

EF Growth 6.635 4.707 22.20 50.27 −5.23 32.76

(0.39) (1.64) (0.01) (2.77)

EF Value 4.680 3.886 56.87 37.22 −1.57 7.48

(1.38) (1.91) (−0.13) (2.06)

EF Others 7.017 5.649 58.66 33.23 −0.44 8.55

(1.18) (1.92) (0.51) (2.24)

EF Average 7.619 4.328 35.30 43.26 −1.76 23.19

(0.97) (1.92) (0.13) (2.55)

Group Average 6.989 4.696 35.62 41.40 −0.47 23.45

(1.00) (1.94) (0.24) (2.55)

Panel B: ETFs

FI Global 3.555 2.910 52.77 31.84 8.92 6.47

(0.89) (1.27) (0.15) (2.18)

FI Sector 2.002 1.841 92.65 8.34 −1.43 0.45

(1.77) (2.01) (0.03) (1.97)

FI Long Term 9.208 7.720 82.56 16.75 0.16 0.54

(1.35) (1.47) (0.25) (1.60)

FI Intermediate Term 4.283 3.537 66.89 30.30 −0.64 3.46

(1.29) (1.61) (−0.35) (2.16)

FI Short Term 0.890 2.156 36.00 34.02 −1.95 31.93

(0.80) (1.14) (0.12) (2.26)

FI Government 0.123 1.444 7.41 28.26 0.77 63.56

(0.65) (1.16) (0.35) (2.47)

FI High Yield 2.787 2.636 94.35 5.68 −0.05 0.02

(1.39) (2.51) (−0.13) (2.00)

FI Others 4.516 3.699 98.79 1.20 0.01 0.01

(1.57) (2.14) (−0.22) (1.87)

FI Average 3.421 3.243 66.43 19.55 0.72 13.30

(1.21) (1.66) (0.03) (2.06)

EF Balanced 1.408 1.988 61.75 28.67 0.07 9.50

(1.24) (2.09) (0.17) (1.73)

EF Global 2.524 2.404 69.21 22.32 1.84 6.63

(1.45) (2.27) (0.15) (2.60)

EF Sector 2.259 1.687 48.06 33.30 −0.38 19.01

(1.16) (2.02) (0.04) (2.42)

EF Commodities 3.222 1.430 69.22 23.32 1.37 6.10

(1.56) (2.03) (0.07) (2.23)

EF Large Cap 1.559 2.842 79.38 17.94 −0.28 2.96

(1.50) (2.31) (−0.28) (2.36)

EF Mid Cap 3.267 2.648 79.32 15.20 −0.51 5.98

(1.35) (1.96) (0.05) (2.31)

EF Small Cap 2.240 2.731 90.59 9.41 −0.56 0.56
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Styles EW Port Individual Individual Individual Individual Individual

Kurtosis Kurtosis COKURT (%) VOLCOMV (%) ICOKURT (%) RESKURT (%)

(1.51) (2.29) (−0.09) (2.47)

EF Growth 1.453 1.884 81.83 15.01 −0.03 3.19

(1.70) (2.28) (0.21) (2.62)

EF Value 2.537 3.579 79.72 17.24 −0.44 3.48

(1.40) (2.24) (0.16) (2.43)

EF Bear Market 0.970 1.142 48.28 38.85 −1.11 13.99

(1.26) (1.83) (−0.01) (2.24)

EF Currency 3.894 3.786 55.12 26.71 0.19 17.99

(0.94) (1.60) (0.31) (2.24)

EF Others 0.489 1.749 55.47 32.84 1.62 10.08

(1.45) (2.27) (0.04) (2.63)

EF Average 2.152 2.323 68.16 23.40 0.15 8.29

(1.38) (2.10) (0.07) (2.36)

Group Average 2.659 2.691 67.47 21.86 0.38 10.30

(1.31) (1.93) (0.05) (2.24)

Panel C: Open-Ended Funds

FI Index 0.545 1.412 75.50 20.03 −1.91 6.38

(2.17) (2.30) (−0.13) (2.42)

FI Global 5.778 3.739 35.55 52.03 −4.35 16.76

(1.11) (2.29) (0.10) (2.56)

FI Short Term 1.911 5.023 16.24 71.25 −20.75 33.20

(0.47) (1.94) (−0.33) (2.20)

FI Government 0.430 1.311 56.88 26.83 −1.82 18.10

(1.97) (2.18) (0.18) (2.65)

FI Mortgage 0.966 2.018 60.27 27.10 0.48 12.15

(1.99) (2.38) (0.13) (2.17)

FI Corporate 4.220 2.578 69.02 25.31 −1.93 7.60

(1.79) (2.54) (−0.15) (2.17)

FI High Yield 4.850 5.553 72.90 21.01 −0.03 6.12

(1.58) (2.28) (0.27) (2.34)

FI Others 2.824 3.412 18.32 21.92 −0.95 60.71

(0.56) (1.36) (0.14) (2.84)

FI Average 2.690 3.131 50.59 33.18 −3.91 20.13

(1.45) (2.16) (0.03) (2.42)

EF Index 87.572 2.850 77.95 18.13 −0.77 4.69

(1.69) (2.57) (−0.14) (2.44)

EF Commodities 4.114 1.585 66.37 25.43 −0.66 8.86

(1.57) (2.62) (0.05) (2.52)

EF Sector 2.142 1.268 44.65 37.35 1.03 16.97

(1.70) (2.32) (0.25) (2.68)

EF Global 3.287 2.245 73.89 20.49 0.54 5.08

(1.69) (2.75) (0.15) (2.79)

EF Balanced 2.151 3.332 73.09 21.10 −0.83 6.64

(1.55) (2.49) (0.25) (2.56)

EF Leverage and Short 23.537 1.597 44.92 38.01 −0.47 17.54

(1.39) (2.12) (0.34) (2.33)

EF Long Short 2.791 1.439 67.59 24.49 2.43 5.48
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Styles EW Port Individual Individual Individual Individual Individual

Kurtosis Kurtosis COKURT (%) VOLCOMV (%) ICOKURT (%) RESKURT (%)

(1.36) (2.09) (0.07) (2.49)

EF Mid Cap 1.336 2.579 76.03 21.74 −1.06 3.28

(1.65) (2.43) (0.10) (2.55)

EF Small Cap 1.097 1.930 73.92 24.35 −1.25 2.98

(1.70) (2.55) (−0.03) (2.56)

EF Aggressive Growth 0.730 2.067 71.61 19.73 0.58 8.08

(1.39) (2.54) (0.04) (2.55)

EF Growth 2.198 2.114 73.00 21.60 0.11 5.30

(1.86) (2.62) (0.16) (2.61)

EF Growth and Income 2.785 2.169 82.80 14.39 −0.06 2.87

(1.80) (2.69) (0.07) (2.55)

EF Equity Income 3.010 2.041 79.60 17.44 −0.21 3.17

(1.74) (2.52) (0.09) (2.57)

EF Others 1.857 1.994 66.75 23.17 0.11 9.97

(1.41) (2.54) (0.08) (2.58)

EF Average 9.901 2.086 69.44 23.39 −0.04 7.21

(1.61) (2.49) (0.11) (2.56)

Group Average 7.279 2.466 62.59 26.95 −1.45 11.91

(1.55) (2.37) (0.08) (2.50)

Panel D: Hedge Funds

Equity Hedge 2.004 2.001 17.56 34.18 1.08 47.17

(0.64) (1.50) (0.29) (2.45)

Event-Driven 6.907 4.071 23.59 31.03 3.75 41.64

(0.73) (1.58) (0.49) (2.25)

Fund of Funds 4.186 2.951 44.53 33.21 2.35 19.91

(1.17) (1.95) (0.37) (2.31)

HFRI 4.018 6.471 33.21 42.58 −0.29 24.50

(0.98) (2.14) (0.70) (2.90)

HFRX 8.220 6.048 50.56 27.05 1.26 21.13

(0.69) (1.88) (0.65) (2.27)

Macro 0.134 2.006 7.28 22.82 2.96 66.95

(0.61) (1.21) (0.29) (2.32)

Relative Value 25.845 7.001 7.27 45.82 −8.80 55.89

(0.42) (1.07) (0.20) (1.96)

Group Average 7.330 4.364 26.28 33.81 0.33 39.60

(0.75) (1.62) (0.43) (2.35)
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Table V: Autocorrelation-adjusted Skewness Decomposition of Hedge Funds

Identify the 3-lag autocorrelated observed return process as ri,t = (β0,i + β1,i + β2,i)rp,t + ui,t. ri,t and rp,t are demeaned

return for fund i and market portfolio. Substitute the true β̃i (=β0,i + β1,i + β2,i) in the equation of ri,t = β̃irp,t to derive and

compute the skewness decomposition. Group Average is the average of statistics across all fund styles.

Panel A: Skewness Decomposition

Styles Individual Individual Individual

COSKEW (%) ICOSKEW (%) RESSKEW (%)

Equity Hedge 23.66 36.20 43.21

(-0.32) (-0.28) (0.04)

Event-Driven 50.84 21.25 27.54

(-0.54) (-0.59) (0.08)

Fund of Funds 44.63 21.19 35.23

(-0.95) (-0.79) (-0.30)

HFRI 141.69 -49.19 8.05

(-0.75) (-0.40) (-0.26)

HFRX 66.09 -15.20 52.80

(-0.83) (-1.36) (-0.25)

Macro 42.53 -99.38 157.81

(0.11) (0.12) (0.05)

Relative Value 32.20 22.77 45.39

(-0.37) (-0.60) (-0.18)

Group Average 57.38 -8.91 52.86

(-0.52) (-0.56) (-0.12)

Panel B: Kurtosis Decomposition

Styles Individual Individual Individual Individual

COKURT (%) V OLCOMV (%) ICOKURT (%) RESKURT (%)

Equity Hedge 9.77 48.98 -11.54 52.88

(0.50) (1.20) (0.22) (2.15)

Event-Driven 10.18 51.51 -6.23 44.51

(0.50) (1.26) (0.25) (2.06)

Fund of Funds 37.69 43.03 -2.42 21.82

(1.04) (1.66) (0.33) (2.04)

HFRI 36.99 34.96 4.50 23.57

(1.07) (1.91) (0.69) (2.80)

HFRX 52.37 21.01 1.58 25.76

(0.90) (1.53) (0.25) (2.25)

Macro -9.27 60.95 -35.47 84.24

(0.27) (0.82) (0.14) (1.95)

Relative Value -5.57 67.05 -21.31 60.21

(0.27) (0.95) (0.07) (1.82)

Group Average 18.88 46.79 -10.13 44.71

(0.65) (1.33) (0.28) (2.15)

61



Table VI:

Skewness Decomposition by the Beta-weighted Exogenous Factors

Beta-weighted factors are constructed from Fama-French 3 factors, Carhart 4 factors, Fung-Hsieh 7 factors, and 2 bond factors.

Equity CEFs and ETFs use the beta-weighted Fama-French 3 factors. Equity open-ended funds and hedge funds use the beta-

weighted Carhart 4 factors, and Fung-Hsieh 7 factors, respectively. Bond CEFs, ETFs, and open-ended funds use two more bond

indexes in addition to the factors used in their equity counterparts - the Barclay U.S. government/credit index and corporation

bond index. The weights to construct beta-weighted factors depend on the respective betas on each factor. Betas are estimated

by regressing fund excess returns on factor excess returns. EW portfolio skewness is the cross-sectional average of skewness of

beta-weighted factors. Individual skewness is the cross-sectional average of skewness of individual funds in each style. Skewness is

the third central moment about the mean and computed as E[r3i ]/σ
3

i . ri and σi are the demeaned return and standard deviation of

fund i. COSKEW, ICOSKEW, and RESSKEW refer to the following components in the skewness decomposition:

E(r3i ) = β2

i cov(ri, r
2

p) + 2β2

i cov(ui, r
2

p)
︸ ︷︷ ︸

COSKEW

+3βicov(u
2

i , rp)
︸ ︷︷ ︸

ICOSKEW

+ E(u3

i )
︸ ︷︷ ︸

RESSKEW

where rp is the demeaned return for the market portfolio. Individual COSKEW, ICOSKEW, and RESSKEW are the average

of estimated values from the above equation by GMM across individual funds and reported as percentages of the skewness of

demeaned fund returns E[r3i ]. FI and EF stand for fixed income and equity funds, respectively. Numbers in parentheses are t-values

for COSKEW, ICOSKEW, and RESSKEW against the hypothesis of zero weight. FI Average is the average of statistics across

fixed-income fund styles. EF Average is the average of statistics across equity fund styles. Group Average is the average of statistics

across all fund styles.

Styles EW Port Individual Individual Individual Individual

Skewness Skewness COSKEW (%) ICOSKEW (%) RESSKEW (%)

Panel A: Closed-End Funds

FI Global −0.574 −0.602 41.59 43.16 22.61

(−0.58) (−0.93) (−0.55)

FI Sector −0.953 −0.399 17.23 50.57 30.62

(−0.52) (−0.58) (−0.14)

FI Long Term −1.046 −1.224 24.06 40.45 37.31

(−0.10) (−0.57) (−0.38)

FI Intermediate Term −0.346 0.203 33.08 21.62 38.87

(0.52) (0.27) (−0.14)

FI Short Term −0.644 −0.912 27.61 31.06 41.33

(−0.15) (−0.62) (−0.62)

FI Government −0.002 −0.185 −10.10 31.90 73.75

(0.28) (−0.35) (−0.66)

FI High Yield −0.892 −0.620 35.88 43.72 23.16

(−1.17) (−0.85) (−0.19)

FI Others −1.718 −1.656 27.92 45.98 26.33

(−1.10) (−1.11) (−1.07)

FI Average −0.772 −0.675 24.66 38.56 36.75

(−0.35) (−0.59) (−0.47)

EF Balanced −1.411 −0.780 56.15 37.73 1.82

(−1.16) (−1.08) (0.20)

EF Commodities −1.050 −0.059 13.74 36.45 48.92

(−1.21) (−0.02) (0.92)

EF Global −1.261 −0.162 42.24 35.65 18.19
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Styles EW Port Individual Individual Individual Individual

Skewness Skewness COSKEW (%) ICOSKEW (%) RESSKEW (%)

(−0.70) (−0.43) (0.26)

EF Sector −1.256 −1.136 34.77 36.87 26.89

(−0.67) (−0.96) (−0.47)

EF Large Cap −1.301 −0.698 44.38 28.93 24.39

(−0.99) (−0.55) (0.13)

EF Mid Cap −0.738 −0.258 38.64 44.45 19.48

(−0.72) (−0.35) (0.50)

EF Small Cap −1.190 −0.138 60.32 15.79 23.89

(−1.16) (−0.17) (0.65)

EF Growth −1.276 −0.480 56.45 24.12 15.49

(−0.92) (−0.72) (0.48)

EF Value −1.732 −0.996 37.16 49.86 43.53

(−1.01) (−0.87) (−0.17)

EF Others −1.521 −1.426 71.28 19.91 −1.25

(−1.12) (−1.31) (0.26)

EF Average −1.274 −0.613 45.51 32.98 22.14

(−0.96) (−0.64) (0.28)

Group Average −1.051 −0.640 36.24 35.46 28.63

(−0.69) (−0.62) (−0.05)

Panel B: ETFs

FI Global 1.047 −0.314 135.92 −37.93 2.01

(0.08) (−0.99) (0.41)

FI Sector 0.442 0.826 74.44 −24.43 49.99

(0.82) (−0.79) (2.22)

FI Long Term 0.521 0.945 46.15 27.52 26.33

(0.59) (0.30) (0.85)

FI Intermediate Term 0.350 0.585 61.15 −15.91 54.76

(0.36) (−0.28) (1.32)

FI Short Term 0.032 −0.252 11.22 79.71 9.08

(−0.05) (−0.75) (0.77)

FI Government −0.352 0.526 −39.38 97.85 19.69

(−0.41) (0.99) (0.64)

FI High Yield 0.444 0.654 144.24 −46.88 2.64

(0.75) (−0.49) (0.58)

FI Others 4.09 −1.078 43.27 43.25 13.49

(−0.91) (−1.07) (−0.20)

FI Average 0.162 0.236 59.63 15.40 22.25

(0.15) (−0.39) (0.82)

EF Balanced −0.495 −0.215 28.13 51.83 20.04

(−0.93) (0.02) (1.13)

EF Global −1.158 −0.733 88.37 2.47 8.92

(−1.42) (0.58) (0.41)

EF Sector −1.120 −0.726 74.80 20.61 0.27

(−1.15) (−0.30) (0.29)

EF Commodities −0.884 −0.892 89.40 13.56 −0.32

(−1.42) (−0.46) (0.38)

EF Large Cap −1.494 −1.310 95.59 4.35 0.18
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Styles EW Port Individual Individual Individual Individual

Skewness Skewness COSKEW (%) ICOSKEW (%) RESSKEW (%)

(−1.67) (−0.57) (−0.10)

EF Mid Cap −1.354 −1.194 97.48 2.74 −0.62

(−1.49) (−0.41) (0.44)

EF Small Cap −1.367 −1.327 99.31 0.74 −0.16

(−1.61) (−0.27) (0.02)

EF Growth −1.143 −1.068 98.63 1.72 −0.45

(−1.67) (−0.47) (−0.12)

EF Value −1.673 −1.413 90.50 6.64 1.52

(−1.53) (−0.75) (0.08)

EF Bear Market −0.859 0.676 68.43 25.77 5.16

(1.04) (0.94) (−0.43)

EF Currency −1.328 −0.670 68.62 20.14 12.68

(−0.47) (−0.80) (0.28)

EF Others −1.159 −0.737 91.31 7.37 −1.07

(−1.30) (−0.11) (0.30)

EF Average −1.170 −0.801 82.55 13.16 3.85

(−1.14) (−0.22) (0.22)

Group Average −0.637 −0.386 73.38 14.06 11.21

(−0.62) (−0.28) (0.46)

Panel C: Open-Ended Funds

FI Index 0.166 −0.035 19.27 69.24 11.49

(0.18) (0.02) (−0.50)

FI Global −0.799 −0.556 10.45 13.12 74.46

(−0.39) (−0.30) (0.10)

FI Short Term −0.235 −0.890 25.12 28.16 47.71

(−0.20) (−0.45) (−0.74)

FI Government −0.208 −0.138 6.38 37.52 63.02

(0.22) (−0.38) (−0.34)

FI Mortgage −0.078 −0.420 13.81 37.08 57.28

(−0.15) (−0.54) (−0.35)

FI Corporate −0.471 −0.580 17.70 28.37 59.14

(−0.06) (−0.57) (−0.68)

FI High Yield −0.881 −1.174 54.63 13.86 33.40

(−0.47) (−0.70) (−1.02)

FI Others −0.308 0.286 33.13 9.97 55.44

(−0.07) (−0.09) (0.60)

FI Average −0.352 −0.439 22.56 29.67 50.24

(−0.12) (−0.38) (−0.37)

EF Index −1.068 −0.966 95.98 2.51 0.57

(−1.43) (−0.49) (0.37)

EF commodities −0.768 −0.516 53.30 16.87 34.83

(−1.14) (−0.73) (0.34)

EF Sector −0.642 −0.371 86.37 12.00 1.64

(−0.71) (−0.20) (0.19)

EF Global −0.958 −0.796 88.93 6.46 4.64

(−1.23) (0.03) (0.00)

EF Balanced −1.103 −1.098 89.70 6.38 3.60
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Styles EW Port Individual Individual Individual Individual

Skewness Skewness COSKEW (%) ICOSKEW (%) RESSKEW (%)

(−1.24) (−0.52) (0.10)

EF Leverage and Short −0.669 −0.287 83.87 13.29 2.68

(−0.40) (−0.04) (−0.09)

EF Long Short −1.074 −0.980 98.29 6.13 −4.30

(−1.69) (−0.51) (−0.55)

EF Mid Cap −0.959 −0.919 95.43 4.80 −0.13

(−1.15) (−0.31) (0.08)

EF Small Cap −0.853 −0.741 94.79 5.05 0.15

(−1.09) (−0.20) (0.14)

EF Aggressive Growth −1.139 −0.734 96.85 −1.35 3.82

(−1.06) (0.80) (0.19)

EF Growth −0.963 −0.812 95.01 2.79 1.97

(−1.28) (−0.33) (0.13)

EF Growth and Income −0.970 −0.883 97.86 2.22 −0.23

(−1.32) (−0.21) (0.25)

EF Equity Income −0.876 −0.782 98.07 1.68 0.61

(−1.02) (−0.57) (0.24)

EF Others −0.837 −0.498 92.97 0.77 4.13

(−0.76) (0.56) (0.12)

EF Average −0.919 −0.742 90.53 5.69 3.85

(−1.11) (−0.19) (0.11)

Group Average −0.712 −0.631 65.81 14.41 20.72

(−0.75) (−0.26) (−0.06)

Panel D: Hedge Funds

Equity Hedge 0.458 −0.299 25.50 35.17 39.09

(−0.23) (−0.35) (−0.07)

Event-Driven 0.823 −0.618 35.04 33.95 31.73

(−0.53) (−0.57) (−0.18)

Fund of Funds 0.875 −0.981 24.86 41.13 32.78

(−0.60) (−0.96) (−0.69)

HFRI 1.683 −1.115 52.08 32.13 17.61

(−1.07) (−0.84) (−0.25)

HFRX 1.788 −1.709 −7.77 −29.76 137.54

(−0.43) (−1.32) (−0.39)

Macro 0.202 0.012 33.18 19.93 41.59

(0.15) (0.04) (0.01)

Relative Value 0.668 −1.208 31.81 34.61 34.24

(−0.43) (−0.77) (−0.47)

Group Average 0.928 −0.845 27.81 23.88 47.80

(−0.45) (−0.68) (−0.29)
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Table VII:

Kurtosis Decomposition by the Beta-weighted Exogenous Factors

Beta-weighted factors are constructed from Fama-French 3 factors, Carhart 4 factors, Fung-Hsieh 7 factors, and 2 bond factors. Equity

CEFs and ETFs use the beta-weighted Fama-French 3 factors. Equity open-ended funds and hedge funds use the beta-weighted Carhart

4 factors, and Fung-Hsieh 7 factors, respectively. Bond CEFs, ETFs, and open-ended funds use two more bond indexes in addition to

the factors used in their equity counterparts - the Barclay U.S. government/credit index and corporation bond index. The weights to

construct beta-weighted factors depend on the respective betas on each factor. Betas are estimated by regressing fund excess returns

on factor excess returns. EW portfolio kurtosis is the cross-sectional average of kurtosis of beta-weighted factors. Individual kurtosis

is the cross-sectional average of kurtosis of individual funds in each style. Kurtosis is the fourth central moment about the mean and

computed as E[r4i ]/σ
4

i − 3. ri and σi are the demeaned return and standard deviation of fund i. COKURT, VOLCOMV, ICOKURT,

and RESKURT refer to the following components in the kurtosis decomposition:

E(r4i ) = β3

i cov(ri, r
3

p) + 3β3

i cov(ui, r
3

p)
︸ ︷︷ ︸

COKURT

+6β2

i E(r
2

pu
2

i )
︸ ︷︷ ︸

V OLCOMV

+4βicov(u
3

i , rp)
︸ ︷︷ ︸

ICOKURT

+ E(u4

i ))
︸ ︷︷ ︸

RESKURT

where rp is the demeaned return for the beta-weighted factors. Individual COKURT, VOLCOMV, ICOKURT, and RESKURT are the

average of estimated values from the above equation by GMM across individual funds and reported as percentages of the kurtosis of

demeaned fund returns E[r4i ]. FI and EF stand for fixed income and equity funds, respectively. Numbers in parentheses are t-values

for COSKEW, ICOSKEW, and RESSKEW against the hypothesis of zero weight. FI Average is the average of statistics across fixed-

income fund styles. EF Average is the average of statistics across equity fund styles. Group Average is the average of statistics across

all fund styles.

Styles EW Port Individual Individual Individual Individual Individual

Kurtosis Kurtosis COKURT (%) VOLCOMV (%) ICOKURT (%) RESKURT (%)

Panel A: Closed-End Funds

FI Global 2.746 6.080 14.40 27.69 18.79 36.80

(0.92) (1.44) (1.06) (2.67)

FI Sector 3.270 4.611 5.23 26.79 15.40 51.98

(0.70) (1.39) (1.00) (2.68)

FI Long Term 5.264 8.322 11.30 19.77 14.87 54.04

(0.54) (1.38) (0.98) (2.12)

FI Intermediate Term 3.594 5.443 3.46 20.80 15.67 60.89

(0.79) (1.61) (1.29) (2.74)

FI Short Term 2.044 4.361 9.81 18.24 13.01 58.94

(−0.14) (1.40) (1.05) (2.67)

FI Government 0.750 2.305 0.57 10.51 5.81 82.79

(0.28) (1.32) (0.65) (2.51)

FI High Yield 2.621 3.708 8.99 30.42 14.85 44.63

(1.21) (1.67) (1.24) (2.65)

FI Others 8.538 6.415 8.91 41.37 19.53 29.81

(0.71) (1.21) (1.42) (1.84)

FI Average 3.603 5.156 7.83 24.45 14.74 52.48

(0.62) (1.43) (1.09) (2.48)

EF Balanced 4.621 4.193 20.13 37.79 8.76 32.81

(1.19) (1.68) (0.82) (2.17)

EF Commodities 2.748 2.725 17.71 35.60 4.72 39.76

(1.20) (2.14) (0.62) (2.55)

EF Global 4.518 4.424 17.42 32.38 9.61 40.91
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Styles EW Port Individual Individual Individual Individual Individual

Kurtosis Kurtosis COKURT (%) VOLCOMV (%) ICOKURT (%) RESKURT (%)

(0.86) (1.81) (0.88) (2.74)

EF Sector 4.861 4.279 19.55 39.53 7.99 31.30

(0.62) (1.44) (0.70) (2.55)

EF Large Cap 5.141 5.530 25.55 41.39 8.17 21.42

(1.09) (1.59) (0.90) (2.45)

EF Mid Cap 3.140 4.565 22.54 38.02 8.98 23.25

(1.04) (1.81) (0.68) (2.82)

EF Small Cap 3.346 3.321 33.94 25.32 2.18 38.55

(1.40) (2.03) (0.55) (3.10)

EF Growth 3.710 4.707 28.12 31.77 7.24 29.89

(0.98) (1.67) (0.63) (2.52)

EF Value 5.606 3.886 13.76 53.38 6.21 23.54

(0.73) (1.42) (0.79) (2.15)

EF Others 4.585 5.649 40.51 33.07 6.33 17.54

(1.00) (1.91) (0.80) (2.40)

EF Average 4.228 4.328 23.92 36.83 7.02 29.90

(1.01) (1.75) (0.74) (2.54)

Group Average 3.950 4.696 16.77 31.33 10.45 39.94

(0.84) (1.61) (0.89) (2.52)

Panel B: ETFs

FI Global 1.354 2.910 33.42 42.41 6.63 17.54

(0.76) (1.40) (1.00) (2.42)

FI Sector 1.820 1.841 20.78 62.23 −20.61 37.60

(0.56) (1.36) (−0.55) (2.15)

FI Long Term 2.156 7.720 16.85 22.49 15.72 44.94

(0.49) (1.00) (0.56) (2.14)

FI Intermediate Term 1.805 3.537 18.03 39.49 −1.36 43.85

(0.52) (1.12) (0.05) (1.96)

FI Short Term 1.432 2.156 14.42 36.50 −4.77 53.85

(0.94) (1.13) (−0.09) (1.82)

FI Government 1.583 1.444 1.57 38.33 4.27 56.37

(0.16) (1.23) (0.31) (2.29)

FI High Yield 0.991 2.636 72.62 26.28 −0.63 1.74

(1.12) (2.27) (−0.19) (2.14)

FI Others 3.516 3.699 26.57 47.05 0.80 25.58

(0.68) (1.36) (0.09) (2.07)

FI Average 1.832 3.243 25.53 39.35 0.01 35.18

(0.65) (1.36) (0.15) (2.12)

EF Balanced −0.293 1.988 46.27 31.39 11.01 11.33

(1.21) (1.35) (2.03) (2.20)

EF Global 2.252 2.404 67.05 21.44 2.57 8.68

(1.43) (2.32) (0.40) (2.58)

EF Sector 2.475 1.687 55.01 29.01 −0.25 16.49

(1.36) (2.15) (0.13) (2.44)

EF Commodities 2.052 1.430 61.38 27.92 −3.39 14.13

(1.36) (2.35) (−0.38) (2.43)

EF Large Cap 3.501 2.842 88.41 9.75 0.28 0.57
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Styles EW Port Individual Individual Individual Individual Individual

Kurtosis Kurtosis COKURT (%) VOLCOMV (%) ICOKURT (%) RESKURT (%)

(1.60) (2.25) (−0.01) (2.47)

EF Mid Cap 2.627 2.648 87.58 10.54 0.49 1.66

(1.49) (2.36) (0.22) (2.51)

EF Small Cap 2.781 2.731 93.75 5.88 0.05 0.22

(1.55) (2.43) (−0.25) (2.53)

EF Growth 1.961 1.884 88.07 11.39 0.13 0.76

(1.79) (2.61) (0.03) (2.56)

EF Value 4.289 3.579 81.71 11.59 2.61 2.85

(1.40) (2.06) (0.30) (2.36)

EF Bear Market 1.356 1.142 56.81 31.56 3.70 7.84

(1.25) (1.91) (0.19) (2.25)

EF Currency 2.791 3.786 37.36 34.30 4.05 24.77

(0.73) (1.65) (0.27) (2.32)

EF Others 2.158 1.749 63.24 27.58 1.25 4.44

(1.58) (2.21) (0.31) (2.61)

EF Average 2.329 2.323 68.89 21.03 1.88 7.81

(1.40) (2.14) (0.27) (2.44)

Group Average 2.130 2.691 51.55 28.36 1.13 18.76

(1.10) (1.82) (0.22) (2.31)

Panel C: Open-Ended Funds

FI Index 1.733 1.412 1.80 31.32 1.30 65.57

(0.05) (1.52) (0.29) (2.63)

FI Global 3.549 3.739 20.32 29.09 6.65 43.96

(0.75) (1.45) (0.70) (2.88)

FI Short Term 3.699 5.023 12.68 28.73 3.11 56.08

(0.62) (1.47) (0.44) (2.51)

FI Government 2.232 1.311 3.82 26.34 −1.65 72.39

(0.03) (1.43) (0.12) (2.92)

FI Mortgage 2.061 2.018 9.05 27.42 2.03 61.33

(0.39) (1.52) (0.43) (2.84)

FI Corporate 2.674 2.578 12.86 29.27 4.46 53.43

(0.58) (1.51) (0.57) (2.58)

FI High Yield 4.426 5.553 36.92 32.94 3.21 27.33

(0.95) (2.09) (0.57) (2.66)

FI Others 2.070 3.412 15.20 19.88 −0.84 66.49

(0.43) (1.29) (−0.04) (2.85)

FI Average 2.806 3.131 14.08 28.12 2.28 55.82

(0.47) (1.53) (0.39) (2.73)

EF Index 2.484 2.850 87.34 10.00 0.01 1.90

(1.87) (2.79) (0.18) (2.83)

EF Commodities 1.800 1.585 34.93 34.79 −0.98 31.00

(1.03) (2.16) (−0.02) (2.83)

EF Sector 1.559 1.268 57.22 31.86 0.40 10.43

(1.78) (2.48) (0.15) (2.93)

EF Global 2.023 2.245 66.39 25.07 0.18 7.95

(1.57) (2.72) (0.00) (2.84)

EF Balanced 2.643 3.332 76.37 17.82 0.42 4.54
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Styles EW Port Individual Individual Individual Individual Individual

Kurtosis Kurtosis COKURT (%) VOLCOMV (%) ICOKURT (%) RESKURT (%)

(1.60) (2.65) (0.31) (2.63)

EF Leverage and Short 1.511 1.597 63.23 26.77 0.81 8.70

(1.74) (2.36) (0.23) (2.59)

EF Long Short 1.739 1.439 75.20 19.82 1.72 3.17

(1.48) (2.01) (0.37) (2.45)

EF Mid Cap 2.032 2.579 82.92 15.60 0.30 1.00

(1.71) (2.67) (0.25) (2.72)

EF Small Cap 1.881 1.930 84.21 14.58 0.02 1.05

(1.80) (2.77) (0.01) (2.71)

EF Aggressive Growth 2.797 2.067 74.67 17.15 1.04 6.71

(1.43) (2.55) (0.17) (2.61)

EF Growth 2.172 2.114 80.98 15.26 0.16 2.63

(1.93) (2.71) (0.14) (2.70)

EF Growth and Income 2.285 2.169 86.95 11.60 0.19 0.97

(1.87) (2.69) (0.19) (2.66)

EF Equity Income 2.488 2.041 81.92 16.17 0.27 1.38

(1.79) (2.45) (0.00) (2.70)

EF Others 2.725 1.994 72.46 20.63 0.51 5.78

(1.47) (2.56) (0.12) (2.62)

EF Average 2.153 2.086 73.20 19.80 0.36 6.23

(1.65) (2.54) (0.15) (2.70)

Group Average 2.390 2.466 51.70 22.82 1.06 24.26

(1.22) (2.17) (0.23) (2.71)

Panel D: Hedge Funds

Equity Hedge 2.316 2.001 10.75 32.73 −0.82 57.31

(0.41) (1.25) (0.22) (2.50)

Event-Driven 3.158 4.071 19.04 33.37 3.82 44.35

(0.57) (1.42) (0.54) (2.45)

Fund of Funds 3.030 2.951 14.08 40.21 3.48 42.06

(0.50) (1.33) (0.50) (2.39)

HFRI 6.654 6.471 17.96 27.41 10.30 44.30

(0.93) (1.64) (1.27) (2.90)

HFRX 5.915 6.048 28.63 47.71 −10.42 34.08

(0.43) (1.34) (0.01) (2.25)

Macro 1.449 2.006 9.42 31.69 −1.27 60.01

(0.42) (1.26) (0.16) (2.44)

Relative Value 3.122 7.001 19.63 29.62 5.14 45.70

(0.58) (1.32) (0.60) (2.27)

Group Average 3.664 4.364 17.07 34.68 1.46 46.83

(0.55) (1.36) (0.47) (2.46)
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